Forcing of convection vs. rotation

Flux-based Rayleigh number:

 $\operatorname{Ra}_{\mathrm{F}} = \frac{gH^4 F_{\mathrm{tot}}}{c_{\mathrm{P}} \rho T \nu v^2}.$

Diffusion-free formulation (e.g. Christensen 2002):

$$\operatorname{Ra}_{\mathrm{F}}^{\star} = \frac{\operatorname{Ra}_{\mathrm{F}}}{\operatorname{Pr}^{2} \operatorname{Ta}^{3/2}} = \frac{gF_{\mathrm{tot}}}{8c_{\mathrm{P}}\rho T\Omega^{3}H^{2}} = \frac{F_{\mathrm{tot}}}{8\rho\Omega^{3}H^{3}}.$$
$$\operatorname{Pr} = \frac{\nu}{\chi}, \ \operatorname{Ta} = \frac{4\Omega^{2}H^{4}}{\nu^{2}}, \ H \equiv c_{\mathrm{P}}T/g.$$

Characterize the flux as a velocity and form a *flux Coriolis number*:

$$F_{\rm tot} = \rho u_{\star}^3, \quad u_{\star} = \left(\frac{F_{\rm tot}}{\rho}\right)^{1/3}, \quad Co_{\rm F} = \frac{2\Omega H}{u_{\star}} = 2\Omega H \left(\frac{\rho}{F_{\rm tot}}\right)^{1/3}.$$

Now we see that: $\operatorname{Co}_{\mathrm{F}} = (\operatorname{Ra}_{\mathrm{F}}^{\star})^{-1/3}$.

The length scale *H* can be chosen freely as long as it corresponds to the actual solar value. For the Sun (base of CZ, with $H = H_p$): $\text{Co}_F^{\odot} \approx 3.1$.

Forcing of convection vs. rotation

Convective scale as a function of $\boldsymbol{\Omega}$

Convective scale as a function of $\boldsymbol{\Omega}$

Featherstone & Hindman (2016), Astrophys. J. Lett., 830, L15

So what about the Sun?

Convective scale in the Sun is affected by rotation but only mildly even in the deep convection zone.

Buoyancy zone (BZ): convective energy flux positive, superadiabatic temperature gradient.
 Deardorff zone (DZ): convective energy flux positive, subadiabatic temperature gradient.
 Overshoot zone (OZ): convective energy flux negative, subadiabatic temperature gradient.

Numerical simulations

Cartesian setup with the PENCIL CODE; fully compressible equations in rotating frame:

The Pencil Code Collaboration (2021), *J. Open Source Softw.*, **6**, 2807

$$egin{aligned} & rac{D\ln
ho}{Dt} \,=\, -oldsymbol{
aligned} \,\cdot\, oldsymbol{u}, \ & rac{Doldsymbol{u}}{Dt} \,=\, oldsymbol{g} - rac{1}{
ho} (oldsymbol{
aligned} p - oldsymbol{
aligned} \,\cdot\, 2
u
ho oldsymbol{S}) - 2oldsymbol{\Omega} imesoldsymbol{u}, \ & Trac{Ds}{Dt} \,=\, -rac{1}{
ho} \, [oldsymbol{
aligned} \,\cdot\, (oldsymbol{F}_{
m rad} + oldsymbol{F}_{
m SGS}) - \mathcal{C}] + 2
u oldsymbol{S}^2, \end{aligned}$$

$$F^{\text{rad}} = -K\nabla T, \quad K = K_0 \rho^{-2} T^{6.5}.$$

$$\boldsymbol{F}^{\mathrm{SGS}} = -\chi_{\mathrm{SGS}} \rho \boldsymbol{\nabla} s'.$$

Re =
$$\frac{u_{\rm rms}\ell}{\nu} \approx 40$$
, Pe = PrRe, Pr = $\frac{\nu}{\chi_{\rm SGS}} = 1$, $\ell = k_1^{-1}$. Co = $\frac{2\Omega\ell}{u_{\rm conv}} = 0...17$.