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Sunspots and Solar Activity

»> \What Is the mechanism of formation of solar magnetic

SERUCTURESHNECURDUIENT CONVECHIONIZONE?
»> Solar dynamo mechanism can generate only

Weaki(S= 1L000G)nmeary umitormilarge-scalermagnetc
field.
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Theories of Sunspots Formation

1). The solar dynamo produces strong magnetic fields at the bottom of the
convection zone at the tachocline region

, Where there is a strong shear layer, that
produces strong toroidal magnetic field.

2) The field becomes unstable and rises upward in form of flux tubes, which reach

the surface of the sun and form bipolar structures and sunspots ( ).
Criticism:
A) However, the field in the tachocline region should be reach , Which

IS needed for a coherent flux tube to reach the surface without strong
distortion

B) The generation of such strong coherent magnetic flux tubes has not yet been
seen in self-consistent dynamo simulations (

).

C) Helioseismology also does not support a deeply rooted flux tulbe scenario



Lorentz Force and Momentum Equation

B> 1
JxB = (VxB)xB = —V7+(B-V)B = —V,; [5325@' - Bz'Bj]

O
—at,() Uz — —V] I_Iz'j
where

1

Averaged equation: U=U+u, B=B+b
O _ - _

ap Uz — —Vj I_Iij

where

- B RS | >
M;; = pU;Uj+9;; (p+§B2)_BiBj_Uij(U)+§<b2> 0;5—(bibj)+p{ujus)+...



DNS: The Result Is Robust
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Fig.3 The effective mean magnetic pressure P, (B) = (1 —

ap )Ez ;’Ei determined by Rogachevskii & Kleeorin (2007) — solid
line, and by the model described by Eq. (26) — dashed line (B, =
0.21 csopy’® and gpo = 4).
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Fig.4 Same as Fig. 3, but from simulation (dotted line). The
solid line shows a fit [Eq. (26)] with By, = 0.022 csopy/? (corre-
sponding to By, /Beq = 0.18) and gpo = 21.
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Fig. 7. Effective magnetic pressure obtained from DNS in a polytropic
layer with different +y for horizontal (H, red curves) and vertical (V, blue
curves) mean magnetic fields.
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Figure 7. Normalized effective magnetic pressure, Poge(53), for low (upper panel) and higher
(lower panel) values of Reps. The solid lines represent the fits to the data shown as dotted
lines.
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Figure 2. Effective magnetic pressure as a function of the mean magnetic
field from weakly stratified Runs A1-A29 with an imposed horizontal field
By = Bpid. The black stars, red diamonds, blue crosses, and yellow tri-
angles denote simulations with Rm == 10, 20, 50, and 70, respectively.
We omit points near the boundaries at z/d < 0.35 and z/d > 0.65.
The dashed and dotted lines correspond to approximate fits determined by
Eq. (30), with g0 = 35 and Bp = 0.2Beq, respectively.
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Figure 3. Same as Figure 2 but for Runs B1-B8 for Rm = 40-50. The
solid line corresponds to a fit with gpg = 70 and Bp = 0.063 Beq




Equation of State for Isotropic Turbulence

Sov. Astron. Lett. 15, 274-277 (1989); Sov. Phys. JETP 70, 878-883 (1990)
Phys. Rev. E 50, 2716-2730 (1994)

Phys. Rev. E 76, 056307 (2007)

The total turbulent pressure is reduced when magnetic fluc-

tuations are generated

The equation of state for an isotropic turbulence

1 2
Pr = gﬂf’m + gwk ;

where p.. is the total (hydrodynamic plus magnetic) turbu-
lent pressure,

Wi = (b2)/2p, Is the energy density of the magnetic fluctu-
ations,

W, = po(u?)/2 is the kinetic energy density.



Total Turbulent Energy

T he total energy density W, of the homogeneous turbu-
lence with a nonzero uniform mean magnetic field is con-

served
‘:&’Tk —I— \:&}’111 = const.

T he uniform large-scale magnetic field performs no work on
the turbulence. It can only redistribute the energy between
hydrodynamic fluctuations and magnetic fluctuations.

The total energy density W = W,. + W,,, of the homoge-
neous turbulence with a mean magnetic field B

OWrp W (V x B)?
o5 Ip — —+np
t TO 2
I = 1s the energy source of turbulence,

W /70 determines the dissipation of the turbulent energy.



Strong reduction of Turbulent Pressure

Combining the equations:

1 2 2 i 1 ) ]
P = gwm + gm’:k = 5("1";;- + "I’Im)—gw’ m , Wi + Wi = const ,

we can express the change of turbulent pressure dp, in terms
of the change of the magnetic energy density /W,

, 1
(jp-[ — _gl'fb\‘&rln

Therefore, the turbulent pressure is reduced when magnetic
fluctuations are generated (i.e., oW, > 0).



Equation of State for Anisotropic Turbulence

T he equation of state for an anisotropic turbulence

14+ 30/4)
Hﬁc :
1+ 0/2

1
- 3(140/2)

. 2
Pr Wi + § (

where 0 < o < ~ IS the degree of anisotropy of turbulence.
For a two-dimensional turbulence: ¢ — oo and the equation
of state reads:

2 , , , )
Pr — ; Wi + H’Iﬁ; — (H’xk -+ H’I-m) —Wm .

Thus, the change of turbulent pressure jp, for the two-
dimensional turbulence is

{SI) T — —{5“&? m



Magnetic Fluctuations and

Turbulent Pressure

The total turbulent pressure is decreased also by the tan-
gling of the large-scale mean magnetic field B by the ve-
locity fluctuations.

b2y = (b2 4 ¢, (B,RM)B2 + ... .
where (b2)(0) determines the magnetic fluctuations due to
a small-scale dynamo.

The total turbulent pressure reads

B2 1 _
0 .
pT — pgﬂ ) pQJa ) QP _ ( . 1) CI--;H(B_, |2| | |) .

The sign of a,, (and ¢,) is positive when magnetic fluctua-
tions are generated and negative when they are damped.



Effective Magnetic Pressure

T he total pressure is

ptot = pi +pp + Pp(B) .

where p,. is the fluid pressure and Pp(B) = E is the magnetic
pressure of the mean field.

Now we examine the part in pior that depends on the mean
(large-scale) magnetic field B:

D2 '» P 2
Pun(B) = Pa(B)—ap(B) - = <1—qp<B>>B— — 0,(B )B
EQ
Ptot — P ‘|‘ Pm(B) — P ‘|‘ QP(B)Q—”

where p = p, + p{?). The pressure P,,(B) is the combined
mean magnetic pressure.



Methods and Approximations

“ @uasiElinearr Appreachiern SeEcond-Ordern Correlation
Approximation (SOCA) or First-Order Smoothing
Approximation (FOSA)

Rm<<1l, Re<<1
SteENPECKS KrauseRadl e (1966) ROBERS ) SOWard ({L9Ovs)

< Jau-approaches (spectral tau-approximation) — third-order
or high-order closure

Re>>1 and Rm >> 1

O SZakN(LOVO)FRPOUGUELT ERSCh) LLECrati (1.976);
KYEEONIN ROGACHEVSKINFRUZMAIKINNE990)F Regachevskiii KIeecrn (2007)

“EReEnemmalizationtRrecedueNrenermalizationieiVISCOSITY,
diffusion, electromotive force and other turbulent transport
Coefficients) - Re >> 1 and Rm >>1 , thereis no
Separation ofiscales.

Wlofraige (19815 193)):
Klazorin, Roczenaysikii (1994



DNS: The Result Is Robust
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ap )Ez ;’Ei determined by Rogachevskii & Kleeorin (2007) — solid
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Fig.4 Same as Fig. 3, but from simulation (dotted line). The
solid line shows a fit [Eq. (26)] with By, = 0.022 csopy/? (corre-
sponding to By, /Beq = 0.18) and gpo = 21.
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Fig. 7. Effective magnetic pressure obtained from DNS in a polytropic
layer with different +y for horizontal (H, red curves) and vertical (V, blue
curves) mean magnetic fields.
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Figure 7. Normalized effective magnetic pressure, Poge(53), for low (upper panel) and higher
(lower panel) values of Reps. The solid lines represent the fits to the data shown as dotted
lines.
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Figure 2. Effective magnetic pressure as a function of the mean magnetic
field from weakly stratified Runs A1-A29 with an imposed horizontal field
By = Bpid. The black stars, red diamonds, blue crosses, and yellow tri-
angles denote simulations with Rm == 10, 20, 50, and 70, respectively.
We omit points near the boundaries at z/d < 0.35 and z/d > 0.65.
The dashed and dotted lines correspond to approximate fits determined by
Eq. (30), with g0 = 35 and Bp = 0.2Beq, respectively.
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Figure 3. Same as Figure 2 but for Runs B1-B8 for Rm = 40-50. The
solid line corresponds to a fit with gpg = 70 and Bp = 0.063 Beq




Large-Scale MHD-Instability

Let us estimate the growth rate of this instability. Neglect-
ing dissipative processes for simplicity’s sake, we shall retain
only the Archimedes force in the momentum equation of
the magnetic flux tube

d?¢ _ (CA>2 9Qp(Lp — Lp)

dt? C's LpL,
where C4 = B,/ \/iipa is the Alfven velocity. The growth rate
of this instability is given by

I 1/2
a1

¢ .

(‘T
Ly

Here L, ~ C?/qg.




Large-Scale MHD-Instability (NEMPI)

Astrophys. J. Lett. 740, L50 (2011); Solar Phys. 280, 321-333 (2012).
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NEMPI Is the Large-Scale Instability

Astron. Astrophys. 562, A53 (2014).

1. A local increase of the magnetic field
causes a decrease of the negative effective
magnetic pressure.
2.

leading to enhanced gas
density,

3. This results in a positive feedback loop:

the effective magnetic pressure becomes
more negative, SO
the density increases,

and causes NEMPI.




Formation and Destruction of Bipolar
Magnetic Structures

J. Warnecke, |I.R. Losada, A. Brandenburg, N. Kleeorin and |. Rogachevskii,
Astrophys. J. Lett., 777, L37 (2013); Astron. Astrophys., 589, A125 (2016).

Imposed horizontal field.
ky = 30k1;
512 x 512 x 1024; 10243

BOUNDARY CONDITIONS
at the top and bottom:

But
Z = —T0 .
Bz = O, VzBm — Vzny =0

z =27 :
Bszyzo.

Re=40, Pr, =0.06-1

FI1G. 5.— Time series of B'z,r"BEq(, in a vertical cut through the bipolar region at z = 0. Note the y axis is shifted the see the formation of the loop.



Formation and Destruction of Bipolar
Magnetic Structures

Astrophys. J. Lett., 777, L37 (2013); Astron. Astrophys., 589, A125 (2016).




Magnetic Structures

Astrophys. J. Lett., 777, L37 (2013), Astron. Astrophys., 589, A125 (2016).
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FIG. 1.— Upper panel: normalized vertical magnetic field B / Beq of the
bipolar region at the surface (z = 0) of the simulation domain. The white
lines delineate the area shown in Figure 3. Lower panel: normalized mag-
netic energy B'Z/ng of the two regions relative to the rest of the surface.
Note that we clip both color tables to increase the visualization of the struc-
ture. The field strength reaches around B / Beq = 1.4.




Formation of Magnetic Spots iIn DNS

Brandenburg, Kleeorin, Rogachevskii, ApJL 776, L23 (2013)

2563:5123: 10243

Ptop




Time-evolution of the Magnetic Spot

Brandenburg, Kleeorin, Rogachevskii, ApJL 776, L23 (2013)

FIG. 1.— Evolution from a statistically uniform initial state toward a single spot for B,y /Beqo = 0.02. Here, B, /B.,q 1s shown on the periphery of the
domain. Dark shades correspond to strong vertical fields. Time 1s in units of 74.



Structure of the Magnetic Spot
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F1G. 3.— Cuts of B, /Beq(z) in the zy plane at the top boundary (z/H, = ) and the zz plane through the middle of the spot at y = 0. In the zz cut, we
also show magnetic field lines and flow vectors obtained by numerically averaging in azimuth around the spot.




Linear Phase of NEMPI

Astrophys. J. Lett., 776, L23 (2013)
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FiG. 2.— Growth of Bax / Beq (solid line) and Bmax / Beq (dotted line)
at the top of the domain. The straight red line gives a fit to Bioax [ Beq with
a slope of unity corresponding to the growth rate (me0k?) 1.



DNS in Two Forced Regions: Reconnection

MNRAS 445, 716 (2014).
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Figure 8. Magnetic field structure for Run A at time ¢ /7y q = 1.2. The z
component of the magnetic field, B 1s plotted at 2 /H, = 3.. The height
up to which dynamo operates, 2o /H, = 2, 1s also shown as a frame. Here

magnetic field, B; is not normalized, but in units of , /(p(z = 0)) yCs-In

the same units ng ~ 0.1

MNRAS 459, 4046 (2016).

Figure 4. Three-dimensional visualization of vertical magnetic field, B. at
the surface (colour-coded) together with three-dimensional volume render-
ing of the vertical component of the magnetic field for Run RM1.




Oscillatory @ dynamo

MNRAS 459, 4046 (2016).

The dynamo operator is not self- |

. . . a® dynamo
adjoint because alpha vanishes only ~———s_(present work)
at one boundary, while it is non-zero s 1oL TTO—

at the other boundary. It has complex (sHRs0s)
eigenvalues, and dynamo oscillatory.

10 100 1000
Rey

Figure 2. Upper panel: normalized dynamo frequency, @, as a function of
Reyps. The solid lines show the best fit to our data points (red closed circles)
and the data points of Brandenburg et al. (2008, blue open circles). Lower
panel: normalized growth rate of dynamo. . as a function of Reym. The solid
line shows the best fit to our data points.




Formation of the Current Sheet and Reconnection

MNRAS 459, 4046 (2016).
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Reconnection Rate and Different Regimes

(Parker (1957); Sweet (1969)):

Mp = Urms/Va

Loureiro, N. F., Uzdensky. D. A., Schekochihin, A. A, Cowley.
S. C.. Yousef. T. A. 2009. MNRAS. 399.L146

nang. Y.-M. & Bhattacharjee, A. 2010, Phys. Plasmas, 17,
062104




The Rate of Reconnection

Angular brackets imply averaging
along z-direction.




Reconnection Rate vs Lundgust Number
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MNRAS 459, 4046 (2016).

T T I|
-0 00 Rey=50
> W
LAY Rtlf 26":} .D ¥ ¥
A\ x * ~—0.00
i;ﬂ i 5 o N |
*
. A "t i
\\U x S O =8
E o Q@ % A
= °6 G
0
0.01 e
2 3 4 o
10 10 10 10



ILES-Formation of Magnetic Flux Tubes

( )

Brandenburg A., Gressel O., Jabbari S., Kleeorin N., and Rogachevskii I., Astron.
Astrophys. 562, A53 (2014).

The results from ILES are in good agreement with the
DNS. This demonstrates that the mechanism causing
magnetic flux concentrations by NEMPI is robust and not
sensitive to details of the magnetic Reynolds numbers.

Table 6. Summary of DNS and ILES at varying values of Ma, all for
g =3, ky = 30.

Run By, Rey Ma 1 B. B.

DO1 001 24 015 028 306 078

D02 002 24 014 046 447 131

D10 0.10 8 050 025 491 1.61

03 o010 - 016 =>1 286 1.14

Ino o1mw - 034 =1 270 1.00
Fig. 22. Surface appearance of the vertical magnetic field, BT, in the _ 1 - 3 4 o]
ILES simulations with different Mach numbeT‘s (top to bottom). The 130 0.10 0.68 >1 241 1.02
color coding shows BI'**/B.q in the range of —0.1 (white) to +1.0
(black). Root-mean-square Mach numbers are given by the labels. For
the upper two rows with lower Mach number. the left column is for fixed
initial mean field, whereas in the right column the initial field is adjusted
between the runs, such that the field strength remains constant relative
to the kinetic energy in the background turbulence.

Notes. For ILES, no accurate values of A are available. In the DNS, the
resolution is 256 for Runs D01 and D02, and 5122 for Run D10, while
for Runs 103-130 it is 2567 x 128.




ILES-Formation of Magnetic Flux Tubes

( )

ILES are DNS without explicit physical dissipation coefficients

. The finite-volume code Nirvana is used.
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DNS and LES : 3D Turbulent Convection

MNRAS, 422, 2465-2473 (2012); Astron. Astrophys. 588, A150 (2016).

U x B = npol, B = By+ VX A

1 1 1
——Vp+g+-J x B+ -V -2ups,

p p p

: ] o a1l -9 2" 55
Pyv.U+ i\',-' KVT +205% + £ 52, Bl

)

Ly = Ly =5L, =5d; Pbot =3 10°

(Lz = 10d) Prop ., =0, V,Up=V,Uy;=0
the models that are 24 Mm deep. _ _
BOUNDARY CONDITIONS: @ B;7#0, By =By=0




Effective Magnetic Pressure is
DNS and LES with Turbulent Convection:

MNRAS, 422, 2465-2473 (2012); Astron. Astrophys. 588, A150 (2016).

We perform horizontal averages which show a strong dependence on height.

We also perform time averaging in order to improve the statistics.

Lo
D.B:— Set A

0.6

0.4

0.0 _ p ]
—02F % b .

—0.4

0.0 05  _ 1.0 15
BBy

Figure 2. Effective magnetic pressure as a function of the mean magnetic
field from weakly stratified Runs A1-A29 with an imposed horizontal field
By = Bpaa. The black stars, red diamonds, blue crosses, and yellow tri-
angles denote simulations with Rm = 10, 20, 50, and 70, respectively.
We omit points near the boundaries at z/d < 0.35 and z/d > 0.65.
The dashed and dotted lines correspond to approximate fits determined by
Eq. (30), with g0 = 35 and By = (.2 Beq, respectively.
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Figure 3. Same as Figure 2 but for Runs B1-BS for Rm = 40-50. The
solid line cormesponds to a fit with gpp = 70 and Bp = 0.063 Beq



Kapyla, A. Brandenburg, N. Kleeorin, M. Kapyla, I. Rogachevskii, MNRAS,
422, 2465-2473 (2012); Astron. Astrophys. 588, A150 (2016).
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Magnetic flux concentrations from turbulent
stratified convection*

P. J. Kipyld'??, A. Brandenburg®*>°, N. Kleeorin’-*, M. J. Kipyld', and I. Rogachevskii’-

Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained.
Aims. We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection.
Methods. We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5-24 Mm of the solar
convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep
models is more than 3 x 10? or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either
a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are
present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from
the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in
order to concentrate on purely magnetohydrodynamic effects.

Results. We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high
density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size
increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field
strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of
the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near
the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive
in most of the domain, which is unfavourable for the operation of the negative effective magnetic pressure instability (NEMPI).
Simulations in which a passive vector field is evolved do not show a noticeable difference from magnetohydrodynamic runs in terms
of the growth of the structures. Furthermore, we find that magnetic flux is concentrated in regions of converging flow corresponding
to large-scale supergranulation convection pattern.

Conclusions. The linear growth of large-scale flux concentrations implies that their dominant formation process is a tangling of the
large-scale field rather than an instability. One plausible mechanism that can explain both the linear growth and the concentration of
the flux in the regions of converging flow pattern is flux expulsion. A possible reason for the absence of NEMPI is that the derivative
of the effective magnetic pressure with respect to the mean magnetic field has an unfavourable sign. Furthermore, there may not be
sufficient scale separation, which is required for NEMPI to work.




Parameters (top of Solar Convective Zone)

In the upper part of the convective zone, at depth depth
H ~ 10° cm,

the magnetic Reynolds number Rm ~ 3 x 107_,
the maximum scale of turbulent motions (g ~ 2.8 x 10 cm,

the characteristic turbulent velocity in the maximum scale
lo of turbulent motions ug ~ 10% cm s 1,

the turbulent magnetic diffusion 7, ~ 102 cm? s 1,
the equipartition mean magnetic field Beq = 700 G.

the characteristic time of developing of the instability 7 ~
1.2 days; the turbulent diffusion time 7, ~ 12 days; the
critical magnetic field for the instability Bcr = 0.03Beq.



Realistic Simulations Iin Turbulent Convection

The formation of bipolar regions has recently been found in realistic
radiation-magnetohydrodynamics simulations of near-surface convection
where 1 kG magnetic fields were inserted at the bottom of a 20 Mm deep
box.

Bipolar magnetic regions have previously been studied by advecting a semi-
torus shaped twisted flux tube of 9 kG through the bottom boundary at 7.5
Mm depth of thermally relaxed convection.

Realistic numerical simulations of turbulent convection can find new
properties of sunspots. These simulations have shown that a realistic,
sunspot-like appearance of the magnetic field can be obtained when the
field is kept fixed at the bottom of the domain.



Realistic Simulations Iin Turbulent Convection

Another radiative magnetohydrodynamics simulation with realistic physics also
find spontaneous flux concentrations as a result of strongly converging flows,
even though their domain is more shallow and without supergranulation.

This work might also be related to recent realistic simulations which showed
that magneto-convection tends to segregate into magnetized and
unmagnetized regions.
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