Modeling surface layer convection in a rapidly rotating star

Frank Robinson* Sacred Heart University

Joel Tanner, Sarbani Basu Yale University

*currently at University of Oslo

A Gas Law closes the system

Various types of Convection

1. Laminar convection (lab. experiments)

 Laminar (smooth) – only a few different length scales – motion is predictable, resolve all scales.; U~0.1cm/s, L~1cm

Simulate WATER CELL exps by Gollub & Benson, 1980 'cross-sectional view of rolls'

- Hot blobs of fluid carried by the rolls
- oscillatory instability
- super critical Hopf- bifurcation
- Re = (vel. x length) / (viscosity)

Simulation Re = Actual Re => Direct Num. Sim. (DNS)

2. Convection near the surface of stars

3D Simulations seem to match observed solar granule size and reduce the discrepancy between observed and computed p-mode frequencies (Spada 2018)

Tanner 2016, Magic et al. 2013, Trampedach 2014

A vertical crosssection of temperature

$$\operatorname{Re} = \frac{V\rho d}{\mu_{SGS}} \sim 2000$$

T= 20,000 K (Robinson et al., MNRAS, 2004)

 $Re = 10^{12}$

Simulation Re <<< actual Re => Large Eddy Sim. (LES)

Stellar convection simulations

Global

- Spherical shell (entire Solar Convection Zone)
- Input flux >>> Stellar flux
- Idealised physics (PV=RT), radiation => diffusion approx. (local).
- Model global flow (e.g. differential rotation)
 e.g. Robinson & Chan (2001), Miesch et al. (2006)

- Cartesian box at top of star (~1000km in depth)
- Input flux = Stellar flux
- Realistic physics (EOS tables), 3d radiative transfer (3d Eddington/ray integration)
- Model small scales (e.g granules))
 e.g. Stein & Nordlund(2006), Robinson et al. (2006), Beeck et al. (2012), Tanner et al. (2016)

Observations vs global simulations

Realistic stellar surface convection (small box simulations)

- Standard Solar model, 1D Yale Stellar Evolution model (Guenther & Demarque 1997) used to compute initial stratification.
- Realistic Physics. Ferguson et al. (2005) low temperature opacities, OPAL opacities and OPAL 2005 Equation of State. Hydrogen and Helium ionizations zones included.
- LES of full Navier Stokes equations in a small box (g = constant and no rotation) located in the vicinity of the photosphere (Kim & Chan 1998). Use same opacities and equation of state as in 1D stellar model.
- Radiative energy transport modeled by diffusion approximation in deep layers and 3D Eddington approximation in shallow regions (we assume a gray atmosphere, [note: Tanner et al. (2012) compares 3d Eddington and ray integration methods]
- Vertical walls periodic. Horizontal walls free slip and impenetrable (closed box).

Prior to computing statistics, the simulations must be in equilibrium:

1. Thermally relaxed:

$$\tau > \frac{\int edz}{Input \ Flux}$$

2. Properly Mixed : (angled brackets denote instantaneous horizontal average) – condition met at every level

$$\langle \rho w \rangle \leq 0.001$$

How reliable are the small box simulation results?

Compare to observations

• Compare with other 3D Radiative Hydrodynamical models (Kupka, 2008)

Observed and simulated solar granules

Vertical velocity (20 minutes or about 2 turnover times)

Surface Temperature (box width=4000km)

Compare RHD simulations

Simulation	Vertical boundary condition	RADIATION	Dx (km) Dz (km)	Size(Mm)	Grid
1. CKS-D	CLOSED	Gray	52 17.5	2.7x2.7x2.8	58x58x170
2. CKS-2007	CLOSED	Gray	35 4x4x3 15		117x117x190
3. C05BOLD- High Res	OPEN	Non-gray (5 bin)	28 12-28	11x11x 3	400x400x165
4. CO5BOLD DEEP	OPEN	Gray	56 21	11x11x 5	200x200x250
5. Nordlund & Stein	OPEN	Non-gray (4 bins)	40 20-40	6x6x3	150x150x150

1, Kurutz, GN93, 2 GS98, 3-5 GN98 abundances. CKS=Chan,Kim,Sofia; C05BOLD=M. Steffen et al.

Temperature fluctuation

r.m.s. vertical velocity

Convective flux

Velocity Skewness

What useful information can be extracted from the simulations ?

- 1. Improve Mixing Length theory in the surface layers of stars. (Tanner et al. 2016, Spada et al. 2018, Arnett 2018)
- 2. Improve models of tidal dissipation. (Penev et al. 2009, 2012, 2013)
- 3. Use simulations to test turbulent closures in stellar models. (Kupka and Robinson 2007, Kupka 2017)
- 4. Used as model atmospheres to determine stellar metalicities (Caffau 2008, Joergensen 2019)
- 5. Examine effect of f-plane rotation on convection in fast rotators (more recent work)

1. Testing MLT

First two frames are for present Sun, lowermost frame is for the Sun at 11.6 billion years.

- We use the FWHM of C[w' w'] as the simulation mixing length.
- MLT is the mixing length as a constant multiple of the local pressure scale height.
- CM prescribes mixing length as distance to convection surface.
- Trampadech and Magic results
- Simulations suggest MLT is a poor approximation in the SAL – particularly in more evolved models

Model Ş	Age (Gyr) 4.55	$\log T_{eff}$ 3.761	log g 4.44	Size (Mm) $5.4^2 \times 2.8$	
SG1	11.3	3.704	3.75	$13.6^2 \times 9$	$58^2 \times 120$
\$G2	11.6	3.698	3.37	$46^{2} \times 23$	$58^{2} \times 140$

- Superadiabaticity from Mixing Length Theory (MLT) compared to convection simulations.
- Agreement between MLT and simulation is worse in the more evolved models.
- Vertical lines mark position of the photosphere.

Incorporating turbulence into stellar models (Li et al., ApJ, 2002)

- Observed and computed solar p-modes (I=0-100) tend to disagree near the surface (for the highest frequencies).
- By inserting simulation data (TKE and P_turb) back in to the original stellar models and re-computing the frequencies, we found the discrepancy was reduced by up to a factor of 10.

Application to eta-Bootis

Similarly insert TKE and turbulent pressure into stellar model of eta-Bootis

2. Tidal Dissipation in Stars

Models of eddy viscosity in dissipation in stars tested with simulation data Penev, Sasselov, Robinson & Demarque, (2007, 2009)

Zahn, Ann. d'Astrophys. 1966

$$v = v_{\max} \max\left[\frac{T}{2\tau}, 1\right]$$

Goldreich & Keely, ApJ, 1977.

T=perturbation period , tau=eddy turn over time

$$v = v_{\text{max}} \max\left[\left\{\frac{T}{2\pi\tau}\right\}^2, 1\right]$$

FFT of V(x,y,z,t) from simulations suggest Zahn's linear scaling law may be more appropriate for modeling dissipation in stars

3. Testing turbulence closures in non-local stellar models

(Fig. taken from Kupka and Robinson MNRAS, 2007)

Gryanik et al., JAS, 2005

$$\overline{w\,\mathcal{P}^2} = \frac{\overline{\mathcal{P}^3}}{\overline{\mathcal{P}^2}}\,\overline{w\,\mathcal{P}}$$

Compute both LHS and RHS from 3d solar simulation (average over time and x-y space)

Almost perfect agreement

Fourth order moments

Compute both LHS and RHS from simulations – plot LHS/RHS

Gryanik et al. (GH) model is a significant improvement over quasi-normal (QN) approximation

5. Box simulations of δ Scuti

F-plane approximation

• Omega has constant size and direction throughout the box (consistent with periodic bc).

Current results only at EQUATOR

(Robinson, Tanner and Basu, MNRAS, 2020)

Model	Log T	Log g	W"ma x km/s	L (km)	Pturb/P gas % (Max)
Sun [S]	3.761	4.44	3.0	1000	15
δScuti A	3.81	4.21	4.5	10,000	29
δScuti E	3.81	4.21	4.3	10,000	27

Simulation values

d = model depth (box thickness)timescale, t = d/(sound speed at the top)

Sun: t ~ 160s, d ~ 1Mm (granule turnover time ~8min) $2\pi/\Omega \sim 25$ days >> 8 min [ignore Ω effects]

 δ – Scuti : t ~ 520s, d ~ 10 Mm (granule turnover time ~ 30 mins $2\pi/\Omega$ ~ 6 hours [can we ignore Ω ?}

(Solano & Fernley (1997), Molenda- Zakowicz et al. (2008))

'δ –Scuti' Model	V_rot (km/s)	Period (hrs)	<v"> km/s</v">	Со	Re	
Α	0		4.7	0.0	2070	
B *	153	12	4.4	0.2	1760	
С	153	12	4.3	0.2	1800	
D	184	10	4.2	0.3	1870	
Е	307	6	4.0	0.5	1890	
			$v^{\prime\prime} = turl$	oulent v	velocity	
C_{2} –	Ωd Re=	R = stellar radius				
$CO = \frac{1}{v''}$ μ_{SGS} V_rot = $R\Omega$			d = box depth			
			$\Omega = rotation rate$			
			Co = Co	riolis nu	umber	
B* Excludes cent. force			Re = Reynolds number			

Temperature [K]

Why does zonal velocity vary this way with depth?

Why is $v_y \sim \text{constant}$ near the surface?

Effects of rapid rotation on shallow vs. deep convection

- Eddies/granules in the SAL don't feel rotation!
- Rapid upflow/downflow in SAL region (granules) create a constant zonal velocity (flat profile) near the top of the star
- In the deeper regions, beyond the reach of granulation, rotation controls zonal velocity

Mass mixing length parameter, Alpha

 l_{eddy} = dist over which C[w', w'] drops below 0.5 (solid lines)

 $l_m = 1/\left|\frac{d \ln \rho(z)}{dz} + \frac{d \ln w(z)}{dz} + \frac{d \ln A(z)}{dz}\right| \text{ (dashed lines)} +> \text{ stellar mixing length}$ taken from Trampedach & Stein 2011

 $\rho(z), w(z), A(z)$ are time and horizontal average values of density, vertical velocity and area of up-flows

Change in Eddy (solid lines) size due to rotation don't seem to be accounted in stellar mixing length parameter (dashed lines)

Summary Points

Local f-plane models might be useful for looking at fast rotators such as δScuti

But, need to use spherical shell simulation to model rotation properly (to include meridional circulation/Reynolds stress).

(robinsonf3@sacredheart.edu)

This research was supported in part by the Sacred Heart University "Richard and Barbara Naclerio Faculty Scholars Program"