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Introduction

• Many solar magnetic phenomena have their origin in the processes of
convection within the solar interior.

• Numerical simulations are helpful for understanding solar dynamics.

• But disparities persist between observed and simulated differential rotation
and convective velocities.

• Objective of talk: Compare a set of simulations with radially
uniform/non-uniform viscosity and entropy diffusivity.



Motivation and goals Setup of study Results Secondary effects Conclusion References

Introduction

• Many solar magnetic phenomena have their origin in the processes of
convection within the solar interior.

• Numerical simulations are helpful for understanding solar dynamics.

• But disparities persist between observed and simulated differential rotation
and convective velocities.

• Objective of talk: Compare a set of simulations with radially
uniform/non-uniform viscosity and entropy diffusivity.



Motivation and goals Setup of study Results Secondary effects Conclusion References

Introduction

• Many solar magnetic phenomena have their origin in the processes of
convection within the solar interior.

• Numerical simulations are helpful for understanding solar dynamics.

• But disparities persist between observed and simulated differential rotation
and convective velocities.

• Objective of talk: Compare a set of simulations with radially
uniform/non-uniform viscosity and entropy diffusivity.



Motivation and goals Setup of study Results Secondary effects Conclusion References

Outline

Motivation and goals
Setup of study
Results
Secondary effects
Conclusion



Motivation and goals Setup of study Results Secondary effects Conclusion References

Discrepancies in convective structures and velocities

• The conveyor belt of Busse banana cells (aka Taylor columns, thermal Rossby waves,
giant cells)

• Busse columns arise as a way to satisfy the main constraint on convection in rotating
systems - the Taylor-Proudmann theorem.

• Modified by boundaries, Rossby number values, etc... but always there.

• Columns/giant cells have not been found in observations!
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Discrepancies in differential rotation

  

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009)

(b) (Ω− Ω⊙) – Solar angular velocity relative to Carrington rot (Kosovichev 1996)

(c) uφ = r sin θ(Ω− Ω⊙) – Solar zonal velocity for comparison with simulations.

(d) ⟨uφ⟩t = r sin θ(Ω− Ω⊙) – Typical simulation of zonal velocity (Simitev et al.

2015)

• Observations:
“conical” profile.

• Simulations:
geostrophic profile.

• Differential rotation is a
key ingredient in the
dynamo process (via
Ω-effect).

• Inaccurate differential
rotation leads to
questionable solar
dynamo models.
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Why consider non-uniform viscosity and diffusivity?

• There are very significant radial variations of
material properties in the solar interior,
including the convection zone.

• The radial profile of entropy diffusivity directly
affects entropy distribution and this
determines the local convective intensity.

• The study of linear onset of convection
(Sasaki et al. 2018), appears to be the only
direct investigation of effects of radially
non-uniform profiles.

• The latter finds that location and shape of
convection structures (columns) strongly
depends on diffusivity distributions.

Figure 2: Radial velocity at onset for various radial
distributions of entropy diffusivity in the equatorial plane. (a)
uniform κ and ν. Figure courtesy (Sasaki et al. 2018).
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Anelastic model of convection-driven dynamos

Setting – Electrically conducting, self-gravitating (gravity ∼ 1/r2), perfect gas confined to a rotating (Ωk̂)
spherical shell.

Background state – A hydrostatic polytropic reference state

ρ̄ = ρcζ
n, T = Tcζ, P̄ = Pcζ

n+1, ζ = c0 + c1d/r.

Scales – Length: d = ro − ri Time: d2/νc Entropy: ∆S
Magnetic induction: νc

√
µ0ρc/d Density: ρc Temperature: Tc

Governing equations – Lantz-Braginsky anelastic approximation (e.g. Jones et al., 2011)

∇ · ρ̄u = 0, ∇ ·B = 0,

∂tu+ (∇×u)×u = −∇Π− τ(k̂×u) +
R

Pr

S

r2
r̂ +

ρc
ρ̄
∇ · σ̂ +

1

ρ̄
(∇×B)×B,

∂tS +u · ∇S =
1

Prρ̄T
∇ · κ̄ρ̄T∇S +

c1Pr

RT

(
σ̂ : e+

1

Pmρ̄
(∇×B)2

)
∂tB = ∇× (u×B) + Pm−1∇2B,

where the deviatoric stress tensor σ̂ij = 2ν̄ρ̄(eij − ekkδij/3), eij = (∂iuj + ∂jui)/2.
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Anelastic model of convection-driven dynamos (cont.)

Parameters –

η = ri/ro, n, Nρ = ln
(
ρ̄(ri)/ρ̄(ro)

)
, R =

c1Tcd
2∆S

νcκc
, Pr =

νc
κc

, Pm =
νc
λ
, τ =

2Ωd2

νc
,

Boundary conditions –

v = 0, ∂rv = 0, w = 0 at ri, No-slip velocity BC at the bottom

v = 0, ∂2
rv − ρ̄′

ρ̄r
∂r(rv) = 0, ∂rw − ρ̄′

ρ̄
w = 0 at ro, Stress-free BC at the top

S = 1 at r = ri, S = 0 at r = ro, Dirichlet entropy BC

g = 0, h− h(e) = 0, ∂r(h− h(e)) = 0, at r = ri, ro Vacuum magn BC on outside

Toroidal-poloidal decomposition – Exploiting the solenoidality of the mass flux ρ̄u and the magnetic
flux B,

ρ̄u = ∇× (∇× r̂rv) +∇× r̂r2w, B = ∇× (∇× r̂h) +∇× r̂g.
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Numerical method of solution

• The anelastic code is an extension of (Tilgner, 1997; Simitev & Busse, 2005; 2009; Simitev et al.,
2015).

• Toroidal-polodal decomposition into scalar unknowns v, w, h, g and S.

• Pseudo-spectral method with expansions in spherical harmonics and Chebychev polynomials.

• IMEX Crank-Nicolson scheme combined with Adams-Bashforth scheme.

• Typical resolution for these runs up to Nr = 71, Nθ = 192, Nφ = 384.
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Non-uniform profiles

q

Figure 3: (left) Non-uniform viscosity and entropy diffusivity vary relative to the density.
(right) Local non-dimensional parameters R, Pr and τ vary when non-uniform profiles are
considered.

ν(r) = νc

(
ρ

ρc

)p

,

κ(r) = κc

(
ρ

ρc

)q

,

• Non-uniform profiles are selected to maximize the deviation from uniformity (as far as numerically
feasible).

• Comparable to those used in (Brun et al. 2004, Miesch et al. 2006),

• Note, local/effective non-dimensional parameters vary with radius as a result.

• This causes radially-dependent subcriticality, and style of convection.
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Set-up of study

Soln r-deps η R τ Pr Nρ n

A Uniform 0.65 3 × 106 2000 0.3 3 2
B Non-uniform 0.65 3 × 106 2000 0.3 3 2

C Uniform 0.65 3 × 106 2000 1 3 2
D Non-uniform 0.65 3 × 106 2000 1 3 2

E Uniform 0.65 3 × 106 2000 5 3 2
F Non-uniform 0.65 3 × 106 2000 5 3 2

Table 1: Summary of model parameter values for six
selected convection solutions.

• At η = 0.65, the shell is slightly thicker
than the convection zone.

• At τ = 2000 the Coriolis number is
moderately large.

• The density-scale height Nρ is much
smaller than for the solar convection
zone.

• These choices are largely dictated by
numerical considerations.
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Differential rotation
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Figure 4: Differential rotation. (A – F) as in
Table 1. (a) Isocontours of uφ; (b) Reference solar
profile of uφ; (c) Difference between (a) and (b).

With uniform profiles:

• At small and moderate Pr and with
uniform profiles, differential rotation
is geostrophic outside the tangent
cylinder, and small inside the
tangent cylinder.

• At larger Prandtl numbers contours
of zonal velocity start to deviate
from a cylindrical shape but not
sufficiently.
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is geostrophic outside the tangent
cylinder, and small inside the
tangent cylinder.

• At larger Prandtl numbers contours
of zonal velocity start to deviate
from a cylindrical shape but not
sufficiently.
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Figure 5: Differential rotation. (A – F) as in
Table 1. (a) Isocontours of uφ; (b) Reference solar
profile of uφ; (c) Difference between (a) and (b).

With non-uniform profiles:

• At small and moderate Pr there is
little change at first.

• At larger Prandtl numbers and in
the equatorial belt the contours of
zonal velocity resemble observations
well.

• Discrepancies remain significant in
the polar regions.
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With non-uniform profiles:

• At small and moderate Pr there is
little change at first.

• At larger Prandtl numbers and in
the equatorial belt the contours of
zonal velocity resemble observations
well.

• Discrepancies remain significant in
the polar regions.
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Figure 5: Differential rotation. (A – F) as in
Table 1. (a) Isocontours of uφ; (b) Reference solar
profile of uφ; (c) Difference between (a) and (b).

With non-uniform profiles:

• At small and moderate Pr there is
little change at first.

• At larger Prandtl numbers and in
the equatorial belt the contours of
zonal velocity resemble observations
well.

• Discrepancies remain significant in
the polar regions.
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Structure of convection
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Figure 6: Flow structures corresponding to
Figure 5. (a) Azimuthally-averaged
meridional circulation, (b) Radial velocity at
r = 0.5 and (c) Poloidal streamlines in
equat plane.

With uniform profiles:

• Outside the tangent cylinder:
thermal Rossby waves; drift in
prograde direction.

• Convection in equatorial region
intensifies with increase of Pr.
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Structure of convection
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Figure 7: Flow structures corresponding to
Figure 5. (a) Azimuthally-averaged
meridional circulation, (b) Radial velocity at
r = 0.5 and (c) Poloidal streamlines in
equat plane.

With non-uniform profiles:

• Inside tangent cylinder: Polar
convection develops.

• At larger Pr polar convection
becomes organised into thin
spiralling rolls.

• Outside tangent cylinder -
columnar convection is weaker.
Two-cartridge belt in depth.
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Figure 7: Flow structures corresponding to
Figure 5. (a) Azimuthally-averaged
meridional circulation, (b) Radial velocity at
r = 0.5 and (c) Poloidal streamlines in
equat plane.

With non-uniform profiles:

• Inside tangent cylinder: Polar
convection develops.

• At larger Pr polar convection
becomes organised into thin
spiralling rolls.

• Outside tangent cylinder -
columnar convection is weaker.
Two-cartridge belt in depth.
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Thermal wind balance
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Figure 8: Azimuthally- and time-averaged entropy ⟨S⟩φ,t for uniform (A,C,E) and non-uniform (B,D,F) profiles. Pr = 0.3
(A,B), Pr = 1 (C,D), Pr = 5 (E,F). Other parameters in Table 1.

In the presence of buoyancy the Taylor-Proudmann theorem generalises to the thermal wind balance

k̂ · ∇⟨uφ⟩t ∝ ∂⟨S⟩φ,t

∂θ
,

• If ∂⟨S⟩φ,t/∂θ ≈ 0 then the rotation profile must be close to cylindrical,

• if ∂⟨S⟩φ,t/∂θ ̸= 0 then non-cylindrical differential rotation is promoted.
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Solar–antisolar transition

R = 1× 106
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Figure 9: Differential rotation as a function of the Rayleigh number and the solar/antisolar transition. Isocontours of
azimuthally averaged zonal velocity (uφ) are plotted for the Rayleigh number values indicated in the plot. The rest of the
parameter values are specified in Table 1, with Pr = 0.3 and uniform ν̄ and κ̄ values.

• Transition to anti-solar rotation occurs as Rayleigh number R is increased or as Coriolis number τ is
decreased.

• Transition depends on other parameters as well.
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Effects of self-sustained magnetic fields
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Figure 10: Time series: Dynamo (E) shown by thick lines vs. Non-magnetic convection (E’) shown by thin lines) energy
densities. Selected kinetic energy densities: equatorially symmetric toroidal (red), fluctuating poloidal (green), and fluctuating
toroidal (blue).

• Self-sustained magnetic field affects the amplitude of differential rotation.
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Effects of self-sustained magnetic fields
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Figure 11: Comparison of dynamo (E) and non-magnetic convection (E’) solutions at identical parameters.

• Self-sustained magnetic field does not affect other convective structures significantly.
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Conclusion

• Radially non-uniform viscosity and entropy diffusivity profiles affect differential rotation patterns.

• Improved agreement with solar differential rotation profile at mid-latitudes for higher Prandtl
numbers.

• Significant discrepancies at the polar regions.

• Future work: Expanded parameter sweeps to look for better agreement in the polar regions and
for better agreement in amplitudes, using in particular fixed-flux entropy BCs.

• Future work: Analysis of dynamos.

Gupta, MacTaggart, Simitev (2023) Fluids, 8(11), 288
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