

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Effects of non-uniform viscosity and entropy diffusivity on differential rotation in convecting spherical shells

Parag Gupta, David MacTaggart & Radostin D. Simitev

School of Mathematics and Statistics, University of Glasgow, UK

2024-09-13

"Stellar Convection 2024", NORDITA Stockholm

Motivation	and	goals	
0000			

Results 00000 Secondary effects

References

Introduction

- Many solar magnetic phenomena have their origin in the processes of convection within the solar interior.
- Numerical simulations are helpful for understanding solar dynamics.
- But disparities persist between observed and simulated differential rotation and convective velocities.
- Objective of talk: Compare a set of simulations with radially uniform/non-uniform viscosity and entropy diffusivity.

Motivation and goals •0000

Results 00000 Secondary effects

Conclusion O

References

Introduction

- Many solar magnetic phenomena have their origin in the processes of convection within the solar interior.
- Numerical simulations are helpful for understanding solar dynamics.
- But disparities persist between observed and simulated differential rotation and convective velocities.
- Objective of talk: Compare a set of simulations with radially uniform/non-uniform viscosity and entropy diffusivity.

Results

Secondary effects

References

Introduction

- Many solar magnetic phenomena have their origin in the processes of convection within the solar interior.
- Numerical simulations are helpful for understanding solar dynamics.
- But disparities persist between observed and simulated differential rotation and convective velocities.
- Objective of talk: Compare a set of simulations with radially uniform/non-uniform viscosity and entropy diffusivity.

Motivation and goals ○●○○○ Setup of study 00000 Results 00000 Secondary effects

Conclusion O

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

References

Outline

Motivation and goals Setup of study Results Secondary effects Conclusion

Setup of study 00000 Results 00000 Secondary effects 000 Conclusion O

References

Discrepancies in convective structures and velocities

• The conveyor belt of Busse banana cells (aka Taylor columns, thermal Rossby waves, giant cells)

- Busse columns arise as a way to satisfy the main constraint on convection in rotating systems the Taylor-Proudmann theorem.
- Modified by boundaries, Rossby number values, etc... but always there.
- Columns/giant cells have not been found in observations!

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects 000 Conclusion O

References

Discrepancies in convective structures and velocities

• The conveyor belt of Busse banana cells (aka Taylor columns, thermal Rossby waves, giant cells)

- Busse columns arise as a way to satisfy the main constraint on convection in rotating systems - the Taylor-Proudmann theorem.
- Modified by boundaries, Rossby number values, etc... but always there.
- Columns/giant cells have not been found in observations!

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects 000 Conclusion O

References

Discrepancies in convective structures and velocities

• The conveyor belt of Busse banana cells (aka Taylor columns, thermal Rossby waves, giant cells)

- Busse columns arise as a way to satisfy the main constraint on convection in rotating systems - the Taylor-Proudmann theorem.
- Modified by boundaries, Rossby number values, etc... but always there.
- Columns/giant cells have not been found in observations!

Motivation	and	goal	s
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009)

(b) $(\Omega - \Omega_{\odot})$ - Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ - Solar zonal velocity for comparison with simulations.

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009) (b) $(\Omega - \Omega_{\odot})$ – Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ – Solar zonal velocity for comparison with simulations. (d) $\langle u_{\varphi} \rangle_t = r \sin \theta (\Omega - \Omega_{\odot})$ – Typical simulation of zonal velocity (Simitev et al 2015)

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation	and	goal	s
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009) (b) $(\Omega - \Omega_{\odot})$ – Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ – Solar zonal velocity for comparison with simulations. (d) $\langle u_{\varphi} \rangle_t = r \sin \theta (\Omega - \Omega_{\odot})$ – Typical simulation of zonal velocity (Simitev et a 2015)

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009) (b) $(\Omega - \Omega_{\odot})$ – Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ – Solar zonal velocity for comparison with simulations. (d) $\langle u_{\varphi} \rangle_t = r \sin \theta (\Omega - \Omega_{\odot})$ – Typical simulation of zonal velocity (Simitev et al. 2015)

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009) (b) $(\Omega - \Omega_{\odot})$ – Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ – Solar zonal velocity for comparison with simulations. (d) $\langle u_{\varphi} \rangle_t = r \sin \theta (\Omega - \Omega_{\odot})$ – Typical simulation of zonal velocity (Simitev et al. 2015)

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects

Conclusion O References

Discrepancies in differential rotation

Figure 1: Time- and azimuthally-profiles of solar diff rotation.

(a) Ω – Observations of solar angular velocity (Howe 2009) (b) $(\Omega - \Omega_{\odot})$ – Solar angular velocity relative to Carrington rot (Kosovichev 1996) (c) $u_{\varphi} = r \sin \theta (\Omega - \Omega_{\odot})$ – Solar zonal velocity for comparison with simulations. (d) $\langle u_{\varphi} \rangle_t = r \sin \theta (\Omega - \Omega_{\odot})$ – Typical simulation of zonal velocity (Simitev et al. 2015)

- Observations: "conical" profile.
- Simulations: geostrophic profile.
- Differential rotation is a key ingredient in the dynamo process (via Ω-effect).
- Inaccurate differential rotation leads to questionable solar dynamo models.

Setup of study 00000 Results 00000 Secondary effects

Conclusion O References

Why consider non-uniform viscosity and diffusivity?

- There are very significant radial variations of material properties in the solar interior, including the convection zone.
- The radial profile of entropy diffusivity directly affects entropy distribution and this determines the local convective intensity.
- The study of linear onset of convection (Sasaki et al. 2018), appears to be the only direct investigation of effects of radially non-uniform profiles.
- The latter finds that location and shape of convection structures (columns) strongly depends on diffusivity distributions.

Setup of study 00000 Results

Secondary effects 000 Conclusion O References

Why consider non-uniform viscosity and diffusivity?

- There are very significant radial variations of material properties in the solar interior, including the convection zone.
- The radial profile of entropy diffusivity directly affects entropy distribution and this determines the local convective intensity.
- The study of linear onset of convection (Sasaki et al. 2018), appears to be the only direct investigation of effects of radially non-uniform profiles.
- The latter finds that location and shape of convection structures (columns) strongly depends on diffusivity distributions.

Setup of study 00000 Results

Secondary effects 000 Conclusion O References

Why consider non-uniform viscosity and diffusivity?

- There are very significant radial variations of material properties in the solar interior, including the convection zone.
- The radial profile of entropy diffusivity directly affects entropy distribution and this determines the local convective intensity.
- The study of linear onset of convection (Sasaki et al. 2018), appears to be the only direct investigation of effects of radially non-uniform profiles.
- The latter finds that location and shape of convection structures (columns) strongly depends on diffusivity distributions.

Setup of study 00000 Results

Secondary effects 000 Conclusion O References

Why consider non-uniform viscosity and diffusivity?

- There are very significant radial variations of material properties in the solar interior, including the convection zone.
- The radial profile of entropy diffusivity directly affects entropy distribution and this determines the local convective intensity.
- The study of linear onset of convection (Sasaki et al. 2018), appears to be the only direct investigation of effects of radially non-uniform profiles.
- The latter finds that location and shape of convection structures (columns) strongly depends on diffusivity distributions.

Motivation	and	goals	
00000		-	

Setup	of	study
. eoó	SС) [–]

Results 00000 Secondary effects

Conclusion O References

Anelastic model of convection-driven dynamos

Setting – Electrically conducting, self-gravitating (gravity $\sim 1/r^2$), perfect gas confined to a rotating ($\Omega \hat{k}$) spherical shell.

Background state - A hydrostatic polytropic reference state

$$\bar{\rho} = \rho_c \zeta^n, \quad \overline{T} = T_c \zeta, \quad \bar{P} = P_c \zeta^{n+1}, \quad \zeta = c_0 + c_1 d/r.$$

Governing equations – Lantz-Braginsky anelastic approximation (e.g. Jones et al., 2011)

$$\nabla \cdot \bar{\rho} \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0,$$

$$\partial_t \boldsymbol{u} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \Pi - \tau (\hat{\boldsymbol{k}} \times \boldsymbol{u}) + \frac{\mathrm{R}}{\mathrm{Pr}} \frac{S}{r^2} \hat{\boldsymbol{r}} + \frac{\rho_c}{\bar{\rho}} \nabla \cdot \hat{\boldsymbol{\sigma}} + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}$$

$$\partial_t S + \boldsymbol{u} \cdot \nabla S = \frac{1}{\mathrm{Pr}\bar{\rho}\overline{T}} \nabla \cdot \bar{\kappa} \bar{\rho} \overline{T} \nabla S + \frac{c_1 \mathrm{Pr}}{\mathrm{R}\overline{T}} \left(\hat{\boldsymbol{\sigma}} : \boldsymbol{e} + \frac{1}{\mathrm{Pm}\bar{\rho}} (\nabla \times \boldsymbol{B})^2 \right)$$

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \mathrm{Pm}^{-1} \nabla^2 \boldsymbol{B},$$

where the deviatoric stress tensor $\hat{\sigma}_{ij} = 2\bar{\nu}\bar{\rho}(e_{ij} - e_{kk}\delta_{ij}/3), \quad e_{ij} = (\partial_i u_j + \partial_j u_i)/2.$

Setup of study •0000 Results 00000 Secondary effects 000 Conclusion O References

Anelastic model of convection-driven dynamos

Setting – Electrically conducting, self-gravitating (gravity $\sim 1/r^2$), perfect gas confined to a rotating ($\Omega \hat{k}$) spherical shell.

Background state - A hydrostatic polytropic reference state

$$\bar{\rho} = \rho_c \zeta^n, \quad \overline{T} = T_c \zeta, \quad \bar{P} = P_c \zeta^{n+1}, \quad \zeta = c_0 + c_1 d/r.$$

Governing equations – Lantz-Braginsky anelastic approximation (e.g. Jones et al., 2011)

$$\nabla \cdot \bar{\rho} \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0,$$

$$\partial_t \boldsymbol{u} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \Pi - \tau (\hat{\boldsymbol{k}} \times \boldsymbol{u}) + \frac{\mathrm{R}}{\mathrm{Pr}} \frac{S}{r^2} \hat{\boldsymbol{r}} + \frac{\rho_c}{\bar{\rho}} \nabla \cdot \hat{\boldsymbol{\sigma}} + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}$$

$$\partial_t S + \boldsymbol{u} \cdot \nabla S = \frac{1}{\mathrm{Pr} \bar{\rho} \overline{T}} \nabla \cdot \bar{\kappa} \bar{\rho} \overline{T} \nabla S + \frac{c_1 \mathrm{Pr}}{\mathrm{R} \overline{T}} \left(\hat{\boldsymbol{\sigma}} : \boldsymbol{e} + \frac{1}{\mathrm{Pm} \bar{\rho}} (\nabla \times \boldsymbol{B})^2 \right)$$

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \mathrm{Pm}^{-1} \nabla^2 \boldsymbol{B},$$

where the deviatoric stress tensor $\hat{\sigma}_{ij} = 2\bar{\nu}\bar{\rho}(e_{ij} - e_{kk}\delta_{ij}/3), \quad e_{ij} = (\partial_i u_j + \partial_j u_i)/2.$

Setup of study •0000 Results 00000 Secondary effects 000 Conclusion O References

Anelastic model of convection-driven dynamos

Setting – Electrically conducting, self-gravitating (gravity $\sim 1/r^2$), perfect gas confined to a rotating ($\Omega \hat{k}$) spherical shell.

Background state - A hydrostatic polytropic reference state

$$\bar{\rho} = \rho_c \zeta^n, \quad \overline{T} = T_c \zeta, \quad \bar{P} = P_c \zeta^{n+1}, \quad \zeta = c_0 + c_1 d/r.$$

Governing equations – Lantz-Braginsky anelastic approximation (e.g. Jones et al., 2011)

$$\nabla \cdot \bar{\rho} \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0,$$

$$\partial_t \boldsymbol{u} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \Pi - \tau (\hat{\boldsymbol{k}} \times \boldsymbol{u}) + \frac{\mathrm{R}}{\mathrm{Pr}} \frac{S}{r^2} \hat{\boldsymbol{r}} + \frac{\rho_c}{\bar{\rho}} \nabla \cdot \hat{\boldsymbol{\sigma}} + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}$$

$$\partial_t S + \boldsymbol{u} \cdot \nabla S = \frac{1}{\mathrm{Pr} \bar{\rho} \overline{T}} \nabla \cdot \bar{\kappa} \bar{\rho} \overline{T} \nabla S + \frac{c_1 \mathrm{Pr}}{\mathrm{R} \overline{T}} \left(\hat{\boldsymbol{\sigma}} : \boldsymbol{e} + \frac{1}{\mathrm{Pm} \bar{\rho}} (\nabla \times \boldsymbol{B})^2 \right)$$

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \mathrm{Pm}^{-1} \nabla^2 \boldsymbol{B},$$

where the deviatoric stress tensor $\hat{\sigma}_{ij} = 2\bar{\nu}\bar{\rho}(e_{ij} - e_{kk}\delta_{ij}/3), \quad e_{ij} = (\partial_i u_j + \partial_j u_i)/2.$

Motivation	and	goals
00000		-

Setup	of	study
. eoó	SС	, ⁻

Results 00000 Secondary effects 000 Conclusion O References

Anelastic model of convection-driven dynamos

Setting – Electrically conducting, self-gravitating (gravity $\sim 1/r^2$), perfect gas confined to a rotating $(\Omega \hat{k})$ spherical shell.

Background state - A hydrostatic polytropic reference state

$$\bar{\rho} = \rho_c \zeta^n, \quad \overline{T} = T_c \zeta, \quad \bar{P} = P_c \zeta^{n+1}, \quad \zeta = c_0 + c_1 d/r.$$

Governing equations - Lantz-Braginsky anelastic approximation (e.g. Jones et al., 2011)

$$\nabla \cdot \bar{\rho} \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0,$$

$$\partial_t \boldsymbol{u} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \Pi - \tau (\hat{\boldsymbol{k}} \times \boldsymbol{u}) + \frac{\mathrm{R}}{\mathrm{Pr}} \frac{S}{r^2} \hat{\boldsymbol{r}} + \frac{\rho_c}{\bar{\rho}} \nabla \cdot \hat{\boldsymbol{\sigma}} + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B},$$

$$\partial_t S + \boldsymbol{u} \cdot \nabla S = \frac{1}{\mathrm{Pr} \bar{\rho} \overline{T}} \nabla \cdot \bar{\kappa} \bar{\rho} \overline{T} \nabla S + \frac{c_1 \mathrm{Pr}}{\mathrm{R} \overline{T}} \left(\hat{\boldsymbol{\sigma}} : \boldsymbol{e} + \frac{1}{\mathrm{Pm} \bar{\rho}} (\nabla \times \boldsymbol{B})^2 \right)$$

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \mathrm{Pm}^{-1} \nabla^2 \boldsymbol{B},$$

where the deviatoric stress tensor $\hat{\sigma}_{ij} = 2\bar{\nu}\bar{\rho}(e_{ij} - e_{kk}\delta_{ij}/3), \quad e_{ij} = (\partial_i u_j + \partial_j u_i)/2.$

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Motivation and goals	Setup of study	Results	Secondary effects	Conclusion	References
00000	00000	00000	000	0	

Anelastic model of convection-driven dynamos (cont.)

Parameters -

$$\eta = r_i/r_o, \quad n, \quad N_\rho = \ln\left(\bar{\rho}(r_i)/\bar{\rho}(r_o)\right), \quad \mathbf{R} = \frac{c_1 T_c d^2 \Delta S}{\nu_c \kappa_c}, \quad \mathbf{Pr} = \frac{\nu_c}{\kappa_c}, \quad \mathbf{Pm} = \frac{\nu_c}{\lambda}, \quad \tau = \frac{2\Omega d^2}{\nu_c},$$

Boundary conditions -

$$\begin{array}{ll} v=0, & \partial_r v=0, & w=0 \quad \text{at} \quad r_i, & \text{No-slip velocity BC at the bottom} \\ v=0, & \partial_r^2 v - \frac{\vec{p}'}{\bar{\rho}r} \partial_r(rv)=0, & \partial_r w - \frac{\vec{p}'}{\bar{\rho}}w=0 \quad \text{at} \quad r_o, & \text{Stress-free BC at the top} \\ S=1 \quad \text{at} \quad r=r_i, & S=0 \quad \text{at} \quad r=r_o, & \text{Dirichlet entropy BC} \\ g=0, & h-h^{(e)}=0, & \partial_r(h-h^{(e)})=0, & \text{at} \quad r=r_i, r_o & \text{Vacuum magn BC on outside} \\ \end{array}$$

Toroidal-poloidal decomposition – Exploiting the solenoidality of the mass flux $\bar{
ho}u$ and the magnetic flux B,

$$\bar{
ho} \boldsymbol{u} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} r v) + \nabla \times \hat{\boldsymbol{r}} r^2 w, \qquad \boldsymbol{B} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} h) + \nabla \times \hat{\boldsymbol{r}} g.$$

Motivation and goals	Setup of study	Results	Secondary effects	Conclusion	References
00000	00000	00000	000	0	

Anelastic model of convection-driven dynamos (cont.)

Parameters -

$$\eta = r_i/r_o, \quad n, \quad N_\rho = \ln\left(\bar{\rho}(r_i)/\bar{\rho}(r_o)\right), \quad \mathbf{R} = \frac{c_1 T_c d^2 \Delta S}{\nu_c \kappa_c}, \quad \mathbf{Pr} = \frac{\nu_c}{\kappa_c}, \quad \mathbf{Pm} = \frac{\nu_c}{\lambda}, \quad \tau = \frac{2\Omega d^2}{\nu_c},$$

Boundary conditions -

$$\begin{array}{ll} v=0, & \partial_r v=0, & w=0 \quad \text{at} \quad r_i, \\ v=0, & \partial_r^2 v - \frac{\bar{\rho}'}{\bar{\rho}r} \partial_r(rv)=0, & \partial_r w - \frac{\bar{\rho}'}{\bar{\rho}}w=0 \quad \text{at} \quad r_o, \\ S=1 \quad \text{at} \quad r=r_i, \quad S=0 \quad \text{at} \quad r=r_o, \\ g=0, \quad h-h^{(e)}=0, \quad \partial_r(h-h^{(e)})=0, \quad \text{at} \quad r=r_i, r_o \end{array} \right.$$
 No-slip velocity BC at the bottom
 No-slip velocity BC at the bottom
 Stress-free BC at the top
 Dirichlet entropy BC
 Vacuum magn BC on outside

Toroidal-poloidal decomposition – Exploiting the solenoidality of the mass flux ar
ho u and the magnetic flux B,

$$\bar{
ho} \boldsymbol{u} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} r v) + \nabla \times \hat{\boldsymbol{r}} r^2 w, \qquad \boldsymbol{B} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} h) + \nabla \times \hat{\boldsymbol{r}} g.$$

Motivation and goals	Setup of study	Results	Secondary effects	Conclusion	References
00000	0000	00000	000	0	

Anelastic model of convection-driven dynamos (cont.)

Parameters -

$$\eta = r_i/r_o, \quad n, \quad N_\rho = \ln\left(\bar{\rho}(r_i)/\bar{\rho}(r_o)\right), \quad \mathbf{R} = \frac{c_1 T_c d^2 \Delta S}{\nu_c \kappa_c}, \quad \mathbf{Pr} = \frac{\nu_c}{\kappa_c}, \quad \mathbf{Pm} = \frac{\nu_c}{\lambda}, \quad \tau = \frac{2\Omega d^2}{\nu_c},$$

Boundary conditions -

$$\begin{array}{ll} v=0, & \partial_r v=0, & w=0 \quad \text{at} \quad r_i, \\ v=0, & \partial_r^2 v - \frac{\bar{\rho}'}{\bar{\rho}r} \partial_r(rv)=0, & \partial_r w - \frac{\bar{\rho}'}{\bar{\rho}}w=0 \quad \text{at} \quad r_o, \\ S=1 \quad \text{at} \quad r=r_i, \quad S=0 \quad \text{at} \quad r=r_o, \\ g=0, \quad h-h^{(e)}=0, \quad \partial_r(h-h^{(e)})=0, \quad \text{at} \quad r=r_i, r_o \end{array} \right.$$
 No-slip velocity BC at the bottom
 No-slip velocity BC at the bottom
 Stress-free BC at the top
 Dirichlet entropy BC
 Vacuum magn BC on outside

Toroidal-poloidal decomposition – Exploiting the solenoidality of the mass flux $\bar{\rho}u$ and the magnetic flux B,

$$\bar{\rho}\boldsymbol{u} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} rv) + \nabla \times \hat{\boldsymbol{r}} r^2 w, \qquad \boldsymbol{B} = \nabla \times (\nabla \times \hat{\boldsymbol{r}} h) + \nabla \times \hat{\boldsymbol{r}} g.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Motivation and goals	Setup of study	Results	Secondary effects	Conclusion	References
00000	○○●○○	00000	000	O	
Numerical method of	f solution				

• The anelastic code is an extension of (Tilgner, 1997; Simitev & Busse, 2005; 2009; Simitev et al., 2015).

- Toroidal-polodal decomposition into scalar unknowns v, w, h, g and S.
- Pseudo-spectral method with expansions in spherical harmonics and Chebychev polynomials.
- IMEX Crank-Nicolson scheme combined with Adams-Bashforth scheme.
- Typical resolution for these runs up to $N_r = 71$, $N_{\theta} = 192$, $N_{\varphi} = 384$.

Figure 3: (left) Non-uniform viscosity and entropy diffusivity vary relative to the density. (right) Local non-dimensional parameters R, Pr and τ vary when non-uniform profiles are considered.

• Non-uniform profiles are selected to maximize the deviation from uniformity (as far as numerically feasible).

- Comparable to those used in (Brun et al. 2004, Miesch et al. 2006),
- Note, local/effective non-dimensional parameters vary with radius as a result.
- This causes radially-dependent subcriticality, and style of convection.

Figure 3: (left) Non-uniform viscosity and entropy diffusivity vary relative to the density. (right) Local non-dimensional parameters R, Pr and τ vary when non-uniform profiles are considered.

• Non-uniform profiles are selected to maximize the deviation from uniformity (as far as numerically feasible).

- Comparable to those used in (Brun et al. 2004, Miesch et al. 2006),
- Note, local/effective non-dimensional parameters vary with radius as a result.
- This causes radially-dependent subcriticality, and style of convection.

Figure 3: (left) Non-uniform viscosity and entropy diffusivity vary relative to the density. (right) Local non-dimensional parameters $R,\ Pr$ and τ vary when non-uniform profiles are considered.

• Non-uniform profiles are selected to maximize the deviation from uniformity (as far as numerically feasible).

- Comparable to those used in (Brun et al. 2004, Miesch et al. 2006),
- Note, local/effective non-dimensional parameters vary with radius as a result.
- This causes radially-dependent subcriticality, and style of convection.

Setup of study 0000● Results 00000 Secondary effects

Conclusion O References

Set-up of study

Soln	r-deps	η	R	au	P_r	$N_{ ho}$	n
A	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	0.3	3	2
B	Non-uniform	0.65		2000	0.3	3	2
C	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	1	3	2
D	Non-uniform	0.65		2000	1	3	2
E	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	5	3	2
F	Non-uniform	0.65		2000	5	3	2

 Table 1:
 Summary of model parameter values for six selected convection solutions.

- At $\eta=0.65,$ the shell is slightly thicker than the convection zone.
- At $\tau = 2000$ the Coriolis number is moderately large.
- The density-scale height N_{ρ} is much smaller than for the solar convection zone.
- These choices are largely dictated by numerical considerations.

Setup of study 0000● Results 00000 Secondary effects

Conclusion O References

Set-up of study

Soln	r-deps	η	R	au	P_r	$N_{ ho}$	n
A	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	0.3	3	2
B	Non-uniform	0.65		2000	0.3	3	2
C	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	1	3	2
D	Non-uniform	0.65		2000	1	3	2
E	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	5	3	2
F	Non-uniform	0.65		2000	5	3	2

 Table 1:
 Summary of model parameter values for six selected convection solutions.

- At $\eta = 0.65$, the shell is slightly thicker than the convection zone.
- At $\tau = 2000$ the Coriolis number is moderately large.
- The density-scale height N_{ρ} is much smaller than for the solar convection zone.
- These choices are largely dictated by numerical considerations.

Motivation	and	goals
00000		-

Setup of study 0000● Results 00000 Secondary effects

Conclusion O References

Set-up of study

Soln	r-deps	η	R	au	P_r	$N_{ ho}$	n
A	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6\end{array}$	2000	0.3	3	2
B	Non-uniform	0.65		2000	0.3	3	2
C	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	1	3	2
D	Non-uniform	0.65		2000	1	3	2
E	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	5	3	2
F	Non-uniform	0.65		2000	5	3	2

 Table 1:
 Summary of model parameter values for six selected convection solutions.

- At $\eta=0.65,$ the shell is slightly thicker than the convection zone.
- At $\tau = 2000$ the Coriolis number is moderately large.
- The density-scale height N_{ρ} is much smaller than for the solar convection zone.
- These choices are largely dictated by numerical considerations.

Motivation	and	goals
00000		-

Setup of study 0000● Results 00000 Secondary effects

Conclusion O References

Set-up of study

Soln	r-deps	η	R	au	P_r	$N_{ ho}$	n
A	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	0.3	3	2
B	Non-uniform	0.65		2000	0.3	3	2
C	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	1	3	2
D	Non-uniform	0.65		2000	1	3	2
E	Uniform	0.65	$\begin{array}{c} 3\times10^6\\ 3\times10^6 \end{array}$	2000	5	3	2
F	Non-uniform	0.65		2000	5	3	2

 Table 1:
 Summary of model parameter values for six selected convection solutions.

- At $\eta = 0.65$, the shell is slightly thicker than the convection zone.
- At $\tau = 2000$ the Coriolis number is moderately large.
- The density-scale height N_{ρ} is much smaller than for the solar convection zone.
- These choices are largely dictated by numerical considerations.

Setup of study 00000

Differential rotation

Results 00000 Secondary effects 000 Conclusion O References

Figure 4: Differential rotation. (A – F) as in Table 1. (a) Isocontours of \overline{u}_{φ} ; (b) Reference solar profile of \overline{u}_{φ} ; (c) Difference between (a) and (b).

With uniform profiles:

- At small and moderate Pr and with uniform profiles, differential rotation is geostrophic outside the tangent cylinder, and small inside the tangent cylinder.
- At larger Prandtl numbers contours of zonal velocity start to deviate from a cylindrical shape but not sufficiently.

Setup of study 00000

Differential rotation

Results ●0000 Secondary effects

Conclusion O References

Figure 4: Differential rotation. (A – F) as in Table 1. (a) Isocontours of \overline{u}_{φ} ; (b) Reference solar profile of \overline{u}_{φ} ; (c) Difference between (a) and (b).

With uniform profiles:

- At small and moderate Pr and with uniform profiles, differential rotation is geostrophic outside the tangent cylinder, and small inside the tangent cylinder.
- At larger Prandtl numbers contours of zonal velocity start to deviate from a cylindrical shape but not sufficiently.

Setup of study 00000 Results 0€000 Secondary effects

Conclusion O References

Differential rotation

Figure 5: Differential rotation. (A – F) as in Table 1. (a) Isocontours of \overline{u}_{φ} ; (b) Reference solar profile of \overline{u}_{φ} ; (c) Difference between (a) and (b).

With non-uniform profiles:

- At small and moderate Pr there is little change at first.
- At larger Prandtl numbers and in the equatorial belt the contours of zonal velocity resemble observations well.
- Discrepancies remain significant in the polar regions.

Setup of study 00000 Results 0€000 Secondary effects

Conclusion O References

Differential rotation

Figure 5: Differential rotation. (A – F) as in Table 1. (a) Isocontours of \overline{u}_{φ} ; (b) Reference solar profile of \overline{u}_{φ} ; (c) Difference between (a) and (b).

With non-uniform profiles:

- At small and moderate Pr there is little change at first.
- At larger Prandtl numbers and in the equatorial belt the contours of zonal velocity resemble observations well.

• Discrepancies remain significant in the polar regions.

Setup of study 00000 Results 0●000 Secondary effects

Conclusion O References

Differential rotation

Figure 5: Differential rotation. (A – F) as in Table 1. (a) Isocontours of \overline{u}_{φ} ; (b) Reference solar profile of \overline{u}_{φ} ; (c) Difference between (a) and (b).

With non-uniform profiles:

- At small and moderate Pr there is little change at first.
- At larger Prandtl numbers and in the equatorial belt the contours of zonal velocity resemble observations well.
- Discrepancies remain significant in the polar regions.

Motivation	and	goals
00000		-

Results 00€00 Secondary effects

Conclusion O References

Structure of convection

Figure 6: Flow structures corresponding to Figure 5. (a) Azimuthally-averaged meridional circulation, (b) Radial velocity at r=0.5 and (c) Poloidal streamlines in equat plane.

With uniform profiles:

- Outside the tangent cylinder: thermal Rossby waves; drift in prograde direction.
- Convection in equatorial region intensifies with increase of Pr.

Results 000●0 Secondary effects

Conclusion O References

Structure of convection

Figure 7: Flow structures corresponding to Figure 5. (a) Azimuthally-averaged meridional circulation, (b) Radial velocity at r = 0.5 and (c) Poloidal streamlines in equat plane.

With non-uniform profiles:

- Inside tangent cylinder: Polar convection develops.
- At larger *Pr* polar convection becomes organised into thin spiralling rolls.
- Outside tangent cylinder columnar convection is weaker. Two-cartridge belt in depth.

Results 000●0 Secondary effects

Conclusion O References

Structure of convection

Figure 7: Flow structures corresponding to Figure 5. (a) Azimuthally-averaged meridional circulation, (b) Radial velocity at r = 0.5 and (c) Poloidal streamlines in equat plane.

With non-uniform profiles:

- Inside tangent cylinder: Polar convection develops.
- At larger *Pr* polar convection becomes organised into thin spiralling rolls.
- Outside tangent cylinder columnar convection is weaker. Two-cartridge belt in depth.

Figure 8: Azimuthally- and time-averaged entropy $\langle S \rangle_{\varphi,t}$ for uniform (A,C,E) and non-uniform (B,D,F) profiles. Pr = 0.3 (A,B), Pr = 1 (C,D), Pr = 5 (E,F). Other parameters in Table 1.

In the presence of buoyancy the Taylor-Proudmann theorem generalises to the thermal wind balance

$$\hat{oldsymbol{k}}\cdot
abla\langle \mathbf{u}_arphi
angle_t ~~ \propto ~~ rac{\partial\langle S
angle_{arphi,t}}{\partial heta},$$

- If $\partial \langle S \rangle_{\varphi,t} / \partial \theta \approx 0$ then the rotation profile must be close to cylindrical,
- if $\partial \langle S \rangle_{\varphi,t} / \partial \theta \neq 0$ then non-cylindrical differential rotation is promoted.

Figure 9: Differential rotation as a function of the Rayleigh number and the solar/antisolar transition. Isocontours of azimuthally averaged zonal velocity (\bar{u}_{φ}) are plotted for the Rayleigh number values indicated in the plot. The rest of the parameter values are specified in Table 1, with Pr = 0.3 and uniform $\bar{\nu}$ and $\bar{\kappa}$ values.

629.50

-254

• Transition to anti-solar rotation occurs as Rayleigh number R is increased or as Coriolis number τ is decreased.

549

 $166.31 \\ -352.02$

• Transition depends on other parameters as well.

163.28

223.32

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects

Conclusion O References

Effects of self-sustained magnetic fields

Figure 10: Time series: Dynamo (E) shown by thick lines vs. Non-magnetic convection (E') shown by thin lines) energy densities. Selected kinetic energy densities: equatorially symmetric toroidal (red), fluctuating poloidal (green), and fluctuating toroidal (blue).

• Self-sustained magnetic field affects the amplitude of differential rotation.

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects 00● Conclusion

References

Effects of self-sustained magnetic fields

Figure 11: Comparison of dynamo (E) and non-magnetic convection (E') solutions at identical parameters.

• Self-sustained magnetic field does not affect other convective structures significantly.

Motivation	and	goals	
00000			

Results 00000 Secondary effects 000 Conclusion

References

Conclusion

- Radially non-uniform viscosity and entropy diffusivity profiles affect differential rotation patterns.
- Improved agreement with solar differential rotation profile at mid-latitudes for higher Prandtl numbers.
- Significant discrepancies at the polar regions.
- Future work: Expanded parameter sweeps to look for better agreement in the polar regions and for better agreement in amplitudes, using in particular fixed-flux entropy BCs.
- Future work: Analysis of dynamos.

Gupta, MacTaggart, Simitev (2023) Fluids, 8(11), 288

Motivation	and	goals	
00000		-	

Results 00000 Secondary effects 000

Conclusion O References

References

Allan Sacha Brun, Mark S Miesch, and Juri Toomre. Global-scale turbulent convection and magnetic dynamo action in the solar envelope. *The Astrophysical Journal*, 614(2):1073, 2004.

- Rachel Howe. Solar Interior Rotation and its Variation. *Living Reviews in Solar Physics*, 6(1):1, December 2009. doi: 10.12942/lrsp-2009-1.
- Alexander G Kosovichev. Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone. *The Astrophysical Journal*, 469(1):L61, 1996.
- Mark S Miesch, Allan Sacha Brun, and Juri Toomre. Solar differential rotation influenced by latitudinal entropy variations in the tachocline. *The Astrophysical Journal*, 641(1):618, 2006.
- Youhei Sasaki, Shin ichi Takehiro, Masaki Ishiwatari, and Michio Yamada. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells. *Physics of the Earth and Planetary Interiors*, 276:36–43, March 2018. doi: 10.1016/j.pepi.2017.09.003. URL https://doi.org/10.1016/j.pepi.2017.09.003.
- Radostin D. Simitev, Alexander G. Kosovichev, and Friedrich H. Busse. Dynamo effects near the transition from solar to anti-solar differential rotation. *The Astrophysical Journal*, 810(1):80, September 2015. doi: 10.1088/0004-637x/810/1/80. URL https://doi.org/10.1088/0004-637x/810/1/80.