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Mean-kField Dynamo

» Induction eguation for mean magnetic field:

0B

: Vx (ﬁxﬁ + (uxb)ﬁ) +nAB,
ot - *

Steenbeck, Krause, Radler (1966)



Physics of the Kinetic Alpha-Effect

Parker (1955); Steenbeck, Krause, Radler (1966) £ oc —(QQ-A")B o< J

> ) | Is related to the
In a rotating density stratified convective
turbulence

> The deformations of the magnetic field lines are
caused by and rotating
turbulent eddies.

> [The stratification of turbulence or turbulence
iInhomogeneity breaks a symmetry between the
and eddies.

> Therefore, the total effect of the upward and
downward eddies on the mean magnetic field
and it creates the mean electric
current parallel'to the




Differential Rotation

Old flux
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Carrington :
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Generation of the mean magnetic
field' due to the dynamo

Parker (1955)
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Algebraic and Dynamic Nonlinearities
In Mean-Field Dynamo

» Induction eguation for mean magnetic field:

B
%—t:Vx(UxB—I—E—anB),

> Nonlinear electromotive force;: €(B) = (u X b)
£(B) = a(B) B-[VA(B)-V] A—;»"(B) (VxB)

> Total (kinetic + magnetic) nonlinear alpha effect :

a(B) =o'+ o = x" Py(B) + x(B) ®n(B)

p. i
Irp @b+ O<Lu)

XC(B) = 3T—p<b . (Vxb)) =



Methods for Derivation of EMF

Quasi-Linear Approach or. Second-Order. Correlation Approximation
(SOCA) or First-Order Smoothing Approximation (FOSA)

Rm<<1l, Re<<l1
SteEENPECKS KrauseRadl e (1966) ROBENRS ) SOWarnd (E9O7S) s IVIoTatt (LO73)

Path-Integral Approach (delta-correlated in time random velocity field
or short yet finite correlation time)

zelgovichy Vieichan oV RUZMaIKINSOKGI Ol (1986) St=_—__«< 1
ROgachevskii, KIeeorin (49917 f/u

llau-approaches (spectral tau-approximation, minimal tau-
approximation) — third-order. or high-order. closure

Re >>1 and Rm >> 1
RPOUGUER ERISChIEERANE976))
ROGACHEVSKIITKIEECHNNZO00FZ00 5 2008) B ackinan  EEl o (Z2002)F
Relellar, Klesarin, Roejeienays il (2008)

RENoTalizaton Rrocedure (renormalization ofi VISCosIty, diffusion;,
electromotive force andiotherturbulent transport cCoefficients) -
there s ne separation ofiscales

Wloffaee (19845 1988)s Klggorin, Roczenaysikii (1994



|. Rogachevskii, “Introduction to Turbulent Transport of Particles, Temperature
and Magnetic Fields” (Cambridge University Press, Cambridge, 2021).
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Introduction to
Turbulent Transport of

Particles, Temperature
: and Magnetic Fields

Analytical Methods for
Physicists and Engineers R

lgor Rogachevskii

*Various analytical methods are applied in
this book:

*Mean-field approach;

*Multi-scale approach;

*Dimensional analysis;

*Quasi-linear approach;

*Tau approach;

*Path-integral approach;

*Analyses based on the budget equations.
*One-way and two-way couplings between
turbulence and particles, or temperature,
or magnetic fields are described.

*Table of Contents:
« Preface.

* |. Turbulent transport of temperature field
* |l. Particles and gases in density stratified
turbulence

« lll. Turbulent transport-of magnetic field

* IV. Analysis based on budget equations

* V. Path-integral approach

* VI. Practice problems and solutions.

« Bibliography.



Algebraic Nonlinearities in Mean-kField Dynamo

» Induction eguation for mean magnetic field:

Riidiger and Kichatinov (1993; 1994) JEnESE!

Field, Blackman, Chou (1999) _
Rn 1
Roegachevskil, Kieeorin (20005 20045 20045 2006)



Nonlinear Effect: Magnetic Part of
Alpha effect

» Induction eguation for mean magnetic field:

aa—]?:Vx(UxB+a—77 V x B)
8E<uxb>:aB—nTVxB+...

o= —%(u-rot u>

J. Fluid Mech. 77, 321 (1976)



Magnetic Helicity.

Total magnetic helicity for very large
magnetic Reynolds numbers

Magnetic part of alpha effect: The dynamic nonlinearity:

The evolutionary equation: X(m)(B) = (a- b)



D0

ot 0 o Ty P

N v F{_m) _

for isotropic turbulence
for anisotropic turbulence

In the absence of the magnetic helicity fluxes catastrophic quenching

Kleeorin and Rogachevskii (2022), Gopalakrishnan and Subramanian (2023)



Algebraic Nonlinearities in Mean-kField Dynamo
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Nonlinear Electromotive Force

af;; (k)
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Background Turbulence
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Possible Solution of the Problem

lhe dissipatien el the generated strengllarge-scale magnetc
field IncCreases:

(1) the turbulent kinetic energy of the background turbulence
(1) the turbulent magnetic diffusion coefficient.

TS nen-linear: effect IS taken Interaceceunt by means of the
budget equations for the turbulent kinetic energy and the
turulent totallenergy. for: the hackgreund turkhulence.

St addiienalinen=lineaiRelieciidecreases tnenen=linear
dynamo number withi increase ofia large-scale magnetic fielad
alieCaAlISESIaRS Al IO RHITENC VAN E OWiINCINEUEESCAlE
MACRENCHIE] G}



Budget Equations

The density of turbulent kinetic energy:
E.=p (u?)/2 The density of turbulent magnetic energy:
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The Dissipation of the Generated
Large-Scale Magnetic Field

I _
g =—— {(u b x(V xb)]) —(ux(Vxb)- B
Ho

+ (u x b) - (V x F:)] +7 [ F. — (uu;) V;U; R
) E(B)= (u x b)




Turbulent magnetic Diffusion
and Nonlinear Dynamo Number

Dy, = o 682 LS/T_]i
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Budget equations and astrophysical non-linear mean-field dynamos
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ABSTRACT

Solar, stellar and galactic large-scale magnetic fields are originated due to a combined action of non-uniform (differential)
rotation and helical motions of plasma via mean-field dynamos. Usually, non-linear mean-field dynamo theories take into
account algebraic and dynamic quenching of alpha effect and algebraic quenching of turbulent magnetic ditfusivity. However,
the theories of the algebraic quenching do not take into account the effect of modification of the source of turbulence by the
growing large-scale magnetic field. This phenomenon is due to the dissipation of the strong large-scale magnetic field resulting
in an increase of the total turbulent energy. This effect has been studied using the budget equation for the total turbulent energy
(which takes into account the feedback of the generated large-scale magnetic field on the background turbulence) for (i) a
forced turbulence, (ii) a shear-produced turbulence, and (iii) a convective turbulence. As the result of this effect, a non-linear
dynamo number decreases with increase of the large-scale magnetic field, so that that the mean-field « 2, @2, and «?>Q dynamo
instabilities are always saturated by the strong large-scale magnetic field.

Key words: dynamo—MHD —turbulence — Sun: interior — activity — galaxies: magnetic fields.
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Theory of Differential Rotation

Rogachevskii and Kleeorin (2018), J. Plasma Phys., 84, 735840201
Kleeorin and Rogachevskii (2006), Phys. Rev. E , 73, 046303
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Background Turbulence
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Reynolds Stress
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Theory of Differential Rotation

Rogachevskii and Kleeorin (2018), J. Plasma Phys., 84, 735840201
Kleeorin and Rogachevskii (2006), Phys. Rev. E , 73, 046303
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FIGURE 2. The total angular velocity R, = $20+ 1 that includes the uniform rotation £2
versus the radius r/Rg (solid). This theoretical profile 1s compared with the radial profile
of the solar angular velocity obtained from helioseismology observational data (stars) at
the latitude ¢ = 30° and normalized by the solar rotation frequency $£2o(¢ = 0) at the
equator, where R is the solar radius.



Previous Theories of Differential Rotation

Kippenhahn, R., Astrophys. J. 137, 664 (1963).
Rudiger, G., Geophys. Astrophys. Fluid Dyn. 16 (1), 239-261 (1980).
Durney, B. R., Astrophys. J. 297, 787-798 (1985); Astrophys. J. 407, 367-379 (1993).

Kichatinov, L. L. and Rudiger, G., Astron. Astrophys. 276, 96 (1993);
Astron. Nachr. 326 (6), 379-385 (2005).
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Mean-field theory of differential rotation in
density stratified turbulent convection

I. Rogachevskii'> and N. Kleeorin'+

A mean-field theory of differential rotation in a density stratified turbulent convection
has been developed. This theory is based on the combined effects of the turbulent heat
flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system
of dynamical budget equations consisting in the equations for the Reynolds stress, the
entropy fluctuations and the turbulent heat flux has been solved. To close the system of
these equations, the spectral T approach, which is valid for large Reynolds and Péclet
numbers, has been applied. The adopted model of the background turbulent convection
takes into account an increase of the turbulence anisotropy and a decrease of the
turbulent correlation time with the rotation rate. This theory yields the radial profile
of the differential rotation which is in agreement with that for the solar differential
rotation.

PHYSICAL REVIEW E 73, 046303 (2006)

Effect of heat flux on differential rotation in turbulent convection

Nathan Klecorin™ and Igor Rogachevskii'



Generation of Large-Scale Vorticity
In Fast Rotating Turbulent Convection

Rogachevskii I. and Kleeorin N., Phys. Rev. E 100, 063101 (2019)
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Background Turbulence
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Generation of Large-Scale Vorticity
In Fast Rotating Turbulent Convection

Rogachevskii I. and Kleeorin N., Phys. Rev. E 100, 063101 (2019)
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Generation of Large-Scale Vorticity
In Fast Rotating Turbulent Convection:

Rogachevskii I. and Kleeorin N., Phys. Rev. E 100, 063101 (2019)

9T, _ _F R
C Y 9T+ I (5 VT, Po X exp(—Az,
(_)f 00 0

f &
o,

= F
ot ) o

Q

) V ([JUVI{ 1.,.) — r;V ")
Po

(2 [3((1—1) ( ruF (;+—L(3q—1) Eq

Vinst = ()_
H2 22— D\ poud  3B¢—1) 1+2,

Inside

reduced. |RESEESSN| U. = K, 0. cos( K, X+p) exp(7instt),

Inside V. = K,V, cos( K, X + ©) eXp(Vinstt)

is increased. V. <

S = =5, cos( K, X + ¢) exp(Vinst?)



Comparisons with DNS/LES

P. J. Kapyla, M. J. Mantere, and T. Hackman, Astrophys. J. 742, 34 (2011).
M. J. Mantere, P. J. Kapyla, and T. Hackman, Astron. Nachr. 332, 876 (2011).

Run D2
1=28617.0

€—ep

CKVT +208? —

T(7)
U./(dg)"*
Q.04

Figure 6. Pressure (colors) and horizontal flows (arrows) from the middle of
the convection zone in Runs A9 (left panel) and Al (right panel).

(A color version of this figure is available in the online journal.)

K. L. Chan : Astron. Nachr. 328, 1059 - 1061 (2007) Figure 3. Vertical velocity component U, at the periphery of the box from Run

D2. See also http://www.helsinki.fi/~kapyla/movies.html. The top and bottom
panels show slices near the top and bottom of the convectively unstable layer,
respectively.




Generation of Large-Scale Vorticity
In Fast Rotating Turbulent Convection:

Rogachevskii I. and Kleeorin N., Phys. Rev. E 100, 063101 (2019)
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PHYSICAL REVIEW E 100, 063101 (2019)

Generation of a large-scale vorticity in a fast-rotating density-stratified
turbulence or turbulent convection

Igor Rogachevskii®” and Nathan Kleeorin ®f

We find an instability resulting in generation of large-scale vorticity in a fast-rotating small-scale turbulence or
turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The
large-scale instability causes excitation of two modes: (1) the mode with dominant vertical vorticity and with the
mean velocity being independent of the vertical coordinate; (11) the mode with dominant horizontal vorticity and
with the mean momentum being independent of the vertical coordinate. The mode with the dominant vertical
vorticity can be excited in a fast-rotating density-stratified hydrodynamic turbulence or turbulent convection.
For this mode, the mean entropy is depleted inside the cyclonic vortices, while it 1s enhanced inside the
anticyclonic vortices. The mode with the dominant horizontal vorticity can be excited only in a fast-rotating
density-stratified turbulent convection. The developed theory may be relevant for explanation of an origin of
large spots observed as immense storms in great planets, e.g., the Great Red Spot in Jupiter and large spots

in Saturn. It may be also useful for explanation of an origin of high-latitude spots in rapidly rotating late-type
stars.




0.8 0.85 0.9 095 r/R;

Ficure 4. The profile of Q219 versus r/Rs based on the model of the solar convective zone by
Spruit (1974).




Conclusions

The dynamo theories of the algebraic quenching do not take into account the effect
of modification of the source of turbulence by the growing large-scale magnetic field.
As the result, the nonlinear dynamo number increases with the strong mean
magnetic field. This phenomenon is due to the dissipation of the strong large-scale
magnetic field resulting in an increase of the total turbulent energy.

IS efiect hastheen siudied using the hudget eguateniior the tetaliturulent ERengy,;
anditresults i thermean=iield dyname mnstabilities ane alwayss saturated by the
Streng large-scale magnetc field:

A mean-field theory of differential rotation in a density stratified turbulent convection
has been developed, which is based on a combined effect of the turbulent heat flux
and anisotropy of turbulent convection on the Reynolds stress.

e hackgreund turulent:conveCcton takes Inte account aniinCrease eiithe
rUlence aniseLrepy, and ardecrease off the turbulent correlation time with the
retatien rate: This theon/ yields the radial proefile effthe differential retation in
agreement with the selar differential retation:

In similar set-up, we find an instability resulting in generation of large-scale vorticity in
a fast rotating small-scale turbulent convection with inhomogeneous fluid density
along the rotational axis in anelastic approximation. 61 this Mode; the mean ERtropy.
IS EPIEIECNIISIEENNEICYCIONICAOIHICESTWHIIEN NS ENHANCECNRSICENHERRRLECYCIORIC
Vortices. The theory may be relevant for explanation of an origin of large spots In
great planets, e.g., the Great Red Spot in Jupiter and: large spots in Saturn.
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