

Star-in-a-box setup for late-type stars

Carolina Ortiz Rodríguez (Universität Hamburg, Germany)

Petri Käpylä (Leibniz-Institute for Solar Physics (KIS), Germany) Felipe Navarrete (Institut d'Estudis Espacials de Catalunya (IEEC), Spain) Dominik Schleicher (Universidad de Concepción, Chile) Barbara Toro (Universidad de Concepción, Chile) Juan Pablo Hidalgo (Universidad de Concepción, Chile) Robi Banerjee (Universität Hamburg, Germany)

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024 - carolina.ortiz.rodriguez@hs.uni-hamburg.de

Star-in-a-box simulations of fully convective stars

P. J. Käpylä^{1,2}

- Georg-August-Universität Göttingen, Institut für Astrophysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: pkaepyl@uni-goettingen.de
- ² Nordita, KTH Royal Institute of Technology and Stockholm University, 10691 Stockholm, Sweden

Received 2 December 2020 / Accepted 11 April 2021

ABSTRACT

Context. Main-sequence late-type stars with masses of less than 0.35 M_{\odot} are fully convective.

Aims. The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods. Three-dimensional hydrodynamic and magnetohydrodynamic numerical simulations with a star-in-a-box model, in which a spherical star is immersed inside of a Cartesian cube, are used. The model corresponds to a $0.2 M_{\odot}$ main-sequence M5 dwarf. A range of rotation periods (P_{rot}) between 4.3 and 430 d is explored.

Results. The slowly rotating model with $P_{rot} = 430$ days produces anti-solar differential rotation with a slow equator and fast poles, along with predominantly axisymmetric quasi-steady large-scale magnetic fields. For intermediate rotation ($P_{rot} = 144$ and 43 days) the differential rotation is solar-like (fast equator, slow poles), and the large-scale magnetic fields are mostly axisymmetric and either quasi-stationary or cyclic. The latter occurs in a similar parameter regime as in other numerical studies in spherical shells, and the cycle period is similar to observed cycles in fully convective stars with rotation periods of roughly 100 days. In the rapid rotation regime the differential rotation is weak and the large-scale magnetic fields are increasingly non-axisymmetric with a dominating m = 1 mode. This large-scale non-axisymmetric field also exhibits azimuthal dynamo waves.

Conclusions. The results of the star-in-a-box models agree with simulations of partially convective late-type stars in spherical shells in that the transitions in differential rotation and dynamo regimes occur at similar rotational regimes in terms of the Coriolis (inverse Rossby) number. This similarity between partially and fully convective stars suggests that the processes generating differential rotation and large-scale magnetism are insensitive to the geometry of the star.

Key words. stars: magnetic field – dynamo – magnetohydrodynamics (MHD) – convection – turbulence

First version by Dobler, W., Stix, M., & Brandenburg, A. (2006). The Astrophysical Journal, 638(1), 336.

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024.

Credit: Petri Käpylä

Star-in-a-box setup: set of equations Käpylä, 2021, A&A, 651, A66

The non-ideal fully compressible MHD equations of induction, continuity, motion and energy conservation are solved with the Pencil Code:

$$egin{aligned} rac{\partial m{A}}{\partial t} &= m{u} imes m{B} - \eta \mu_0 m{J} \ &rac{\mathrm{D}\,\mathrm{ln}\,
ho}{\mathrm{D}\,t} = -m{
abla} \cdot m{u} \ &rac{\mathrm{D}\,\mathrm{ln}\,
ho}{\mathrm{D}\,t} &= -m{
abla} \cdot m{u} \ &rac{\mathrm{D}\,\mathrm{u}}{\mathrm{D}\,t} &= -m{
abla} \cdot m{D} \cdot$$

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024.

Boundary conditions:

Impenetrable and stress free for the flow

 $u_n = 0, \quad \partial u_{tan} = 0, \quad n = x, y, z.$

The magnetic field is assumed to be perpendicular to the boundary

$$\partial_n B_n = 0, \quad B_{\text{tan}} = 0.$$

- Temperature is symmetric across the exterior boundaries of the box.
- Vanishing second derivative for the density.

$oldsymbol{J} imes oldsymbol{B}) - 2 oldsymbol{\Omega} imes oldsymbol{u} + oldsymbol{f}_d$

 $+ 2
u oldsymbol{S}^2 + \mu_0 \eta oldsymbol{J}^2$

Star-in-a-box setup: set of runs $\tilde{\Omega}$ \tilde{u}_{rms} $B_{rms}[B_{eq}]$ Pr_M Pr_{SGS} Re_M Re Co Co_{ω} Ta Pe $Grid$ A11.00.0220.920.10.04555499.21.4 4.00×10^{10} 222003A21.00.0210.940.10.04797889.31.2 8.30×10^{10} 322883Ortiz-Rodríguez et al. A&A 678, A82 (2023)A31.00.0210.910.20.08542729.31.6 1.00×10^{10} 222003A41.00.0220.750.70.2855789.22.0 8.16×10^8 222003A51.00.0220.750.70.2855789.22.0 8.16×10^8 222003A61.00.0200.910.70.28751079.72.0 1.69×10^9 302003A61.00.0200.910.70.28751079.72.0 1.69×10^9 222003A61.00.0200.910.70.28251089.41.9 1.60×10^9 222003A61.00.0220.710.50.2829789.32.1 8.16×10^8 2003A71.00.0220.710.50.2873739.92.1 8.16×10^8 <t< th=""></t<>
Set of runsA11.00.0220.920.10.04555499.21.44.00 × 10 ¹⁰ 222003A21.00.0210.940.10.04797889.31.28.30 × 10 ¹⁰ 322883Ortiz-Rodríguez et al. A&A 678, A82 (2023)Fully convective setup at three different rotation rates, $\tilde{\Omega} = 1.0, 0.7, 0.5,$ which $\tilde{\Omega} = 1.0, 0.7, 0.5,$ which
A21.00.0210.940.10.04797889.31.2 8.30×10^{10} 322883Ortiz-Rodríguez et al. A&A 678, A82 (2023)Fully convective setup at three different rotation rates, $\tilde{\Omega} = 1.0, 0.7, 0.5$, which $\tilde{\Omega} = 1.0, 0.7, 0.5$, which
$\tilde{\Omega} = 1.0, 0.7, 0.5, \text{ which}$ A3 1.0 0.021 0.91 0.2 0.08 54 272 9.3 1.6 1.00 × 10 ¹⁰ 22 200 ³ A4 1.0 0.022 0.81 0.5 0.20 54 109 9.3 1.9 1.60 × 10 ⁹ 22 200 ³ A4 1.0 0.022 0.75 0.7 0.28 55 78 9.2 2.0 8.16 × 10 ⁹ 22 200 ³ A5 1.0 0.022 0.75 0.7 0.28 55 78 9.2 2.0 8.16 × 10 ⁹ 22 200 ³ A6 1.0 0.020 0.91 0.7 0.28 75 107 9.7 2.0 1.69 × 10 ⁹ 30 200 ³ A6 1.0 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60 × 10 ⁹ 22 200 ³ A6 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 × 10 ⁸ 30 200 ³ A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 × 10 ⁸ 22 200 ³ A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 × 10 ⁹ 21 200 ³ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 × 10 ⁸ 20 200 ³ A12 ^(*) 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 × 10 ⁸ 28 20 ³
Fully convective setup at three Af 1.0 0.022 0.81 0.5 0.20 54 109 9.3 1.9 1.60×10^9 22 200 ³ A5 1.0 0.022 0.75 0.7 0.28 55 78 9.2 2.0 8.16×10^8 22 200 ³ A6 1.0 0.020 0.91 0.7 0.28 75 107 9.7 2.0 1.69×10^9 30 200 ³ A7 1.0 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60×10^9 22 200 ³ A8 ^(*) 1.0 0.030 - 0.2 0.28 22 108 6.6 1.8 8.16×10^8 30 200 ³ A8 ^(*) 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16×10^8 22 200 ³ A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60×10^9 21 200 ³ A11 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60×10^9 21 200 ³ A12 ^(*) 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16×10^8 20 203 ³ A12 ^(*) 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00×10^8 28 20 ³
Fully convective setup at three A5 1.0 0.022 0.75 0.7 0.28 55 78 9.2 2.0 8.16 × 10 ⁸ 22 200 ³ A6 1.0 0.020 0.91 0.7 0.28 75 107 9.7 2.0 1.69 × 10 ⁹ 30 200 ³ A7 1.0 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60 × 10 ⁹ 22 200 ³ A8 ^(*) 1.0 0.030 - 0.2 0.28 22 108 6.6 1.8 8.16 × 10 ⁸ 30 200 ³ A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 × 10 ⁸ 22 200 ³ A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 × 10 ⁹ 21 200 ³ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 × 10 ⁸ 20 200 ³ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 × 10 ⁸ 20 200 ³ A12 ^(*) 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 × 10 ⁸ 28 20 ³
Fully convective setup at three A6 1.0 0.020 0.91 0.7 0.28 75 107 9.7 2.0 1.69×10^9 30 200 ³ O1 01 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60×10^9 22 200 ³ A8 ^(*) 1.0 0.030 - 0.2 0.28 22 108 6.6 1.8 8.16×10^8 30 200 ³ A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16×10^8 22 200 ³ A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60×10^9 21 200 ³ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16×10^8 20 200 ³ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16×10^8 20 200 ³ A12 ^(*) 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00×10^8 28 200 ³
$\tilde{\Omega} = 1.0, 0.7, 0.5, \text{ which}$ A7 1.0 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60 \times 10^9 22 200^3 A8 ^(*) 1.0 0.030 - 0.2 0.28 22 108 6.6 1.8 8.16 \times 10^8 30 200^3 A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 \times 10^8 22 200^3 A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 \times 10^9 21 200^3 A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 \times 10^8 20 200^3 A12 ^(*) 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 \times 10^8 28 20^3
$\tilde{\Omega} = 1.0, 0.7, 0.5, \text{ which}$ $A8^{(*)} 1.0 0.030 - 0.28 0.28 22 108 6.6 1.8 8.16 \times 10^8 30 200^3 \\ A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 \times 10^8 22 200^3 \\ A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 \times 10^9 21 200^3 \\ A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 \times 10^8 20 200^3 \\ A12^{(*)} 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 \times 10^8 28 20^3 \end{cases}$
$\tilde{\Omega} = 1.0, 0.7, 0.5, \text{ which}$ $A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 \times 10^8 22 200^3$ $A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 \times 10^9 21 200^3$ $A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 \times 10^8 20 200^3$ $A12^{(*)} 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 \times 10^8 28 200^3$
$\tilde{\Omega} = 1.0, 0.7, 0.5, \text{ which}$
$\tilde{\Omega} = 1.0.0.7.0.7.0.5. \text{ which}$
$S_{2} = 1.0.0.7$, U_{2} , Which $A12^{(3)} 1.0 0.028 - 1.0 0.40 70 70 7.2 2.0 4.00 \times 10^{6} 28 200^{6}$
A13 1.0 0.019 0.81 2.0 0.40 99 50 10.1 2.3 4.00×10^{6} 20 200 ³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$P = 12.6 = 12.0 = 2.5 = 4.00 \times 10^{6}$ $17 = 200^{7}$
$\frac{1}{100} - 43, 00, 90 \text{ uays.} = \frac{1}{100} - 43, 00, 10 \text{ uays.} = \frac{1}{100} - \frac{1}{1$
BI 0.7 0.024 0.68 0.5 0.40 84 167 5.9 1.1 1.51 $\times 10^{-62}$ 62 200 ⁻⁶ B2 0.7 0.024 0.74 1.0 0.40 168 168 5.8 1.0 1.51 $\times 10^{9}$ 68 5.76 ³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B5 0.7 0.022 0.86 2 0.40 515 156 0.2 1.0 1.51 $\times 10^{9}$ 58 576 ³
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathbf{D}_{\mathbf{T}} = \mathbf{V}_{\mathbf{T}} = $
$PI_{M} \text{ was varied iron 0.1 lo 10.}$
$C3 = 0.3 = 0.020 = 0.35 = 1.0 = 0.40 = 07 = 07 = 3.6 = 1.1 = 1.00 \times 10^{-1} = 27 = 200^{-1}$
$C_{7} = 0.5 = 0.65 = 2 = 0.40 = 357 = 106 = 4.1 = 0.7 = 7.71 \times 10 = 06 = 576$ $C_{7} = 0.5 = 0.624 = 0.65 = 2 = 0.40 = 357 = 106 = 4.1 = 0.7 = 7.71 \times 10^{8} = 60 = 576^{3}$
C6 0.5 0.021 1.17 5 0.40 750 150 4.7 0.7 7.71 × 10 00 570 C6 0.5 0.020 1.02 10 0.40 1419 142 4.9 0.8 7.71×10^8 51 576 ³

indicates the grid resolution. ^(*) Runs with no dynamo.

 Table 1. Simulation parameters.

Notes. Summary of the simulations. From left to right the columns correspond to the following: Sim is the simulation name, $\tilde{\Omega} = \Omega \tau_{\rm ff}$ is the normalised rotation rate, $\tilde{u}_{\rm rms} = u_{\rm rms}/(GM/R)^{1/2}$ is the normalised root main square velocity, $B_{\rm rms}$ is the root main square magnetic field strength in units of the equipartition strength, Pr_M and Pr_{SGS} are the magnetic and subgrid-scale Prandtl numbers, Re_M and Re are the magnetic and fluid Reynolds numbers, Co and Co_{ω} are the global and local Coriolis numbers, Ta is the Taylor number, and Pe is the Péclet number. The last column

Differential rotation

Ortiz-Rodríguez et al. A&A 678, A82 (2023)

Amplitude of the radial and latitudinal differential rotation

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024.

Differential rotation is quenched at high Re_{M} .

Large scale magnetic fields

Azimuthally averaged toroidal magnetic field near the surface of the star as a function of time.

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024.

When Re_M is increased sufficiently, the relatively regular cycles of large-scale fields found at low and moderate Re_M are disrupted.

Evolved late-type stars using the star-in-a-box setup

- Magnetic fields have been observed in RGB stars.
- Chromospheric emission scales in the same way with the Rossby number in young (main sequence) and evolved (giant) late-type stars (Lehtinen, J. J., et al. 2020, Nature Astronomy, 4(7), 658-662).
- High core-to-envelope rotation rate (Beck, P. G., et al. 2012, Nature, 481(7379), 55-57).

Fig. 5. Position of our sample stars in the Hertzsprung-Russell diagram. Solar metallicity tracks with rotation of Charbonnel & Lagarde (2010) and Charbonnel et al. (in prep.) are shown up to the RGB tip for the low-mass stars (below 2 M_{\odot}), and up to the AGB phase for the intermediate-mass stars. The initial mass of the star (in M_{\odot}) is indicated for each track. The color scale indicates the value of the maximum convective turnover time within the convective envelope $\tau(\max)$. The dotted lines delimit the boundaries of the first dredge up phase, which correspond respectively to the evolutionary points when the mass of the convective envelope encompasses 2.5% of the total stellar mass, and when the convective envelope starts withdrawing in mass at the end of the first dredge-up. Circles correspond to stars which are in Massarotti et al. (2008) and squares correspond to other stars, as explained in the text.

Figure 5 of Aurière, M., et al. (2015), A&A, 574, A90.

Red giant star setup **Considerations**

Rotation periods

Fig. 5. Rotation periods $P_{\rm rot}$ for all the stars showing rotational modulation (grey, 531 stars) and for stars for which a reliable rotation period has been derived (blue, 361 stars).

Figure from Ceillier, T., et al. 2017, A&A, 605, A111.

Relation between the Rossby number and X-ray emission (normalized to the bolometric luminosity) for a sample of both fully and partially convective stars. (Wright, N. J., et al. (2018). MNRAS, 479(2), 2351-2360).

Stellar Convection: Modelling, Theory and Observations - September 20th, 2024.

Magnetic activity

The Rossby number, Ro, measures the rotational influence on the flow.

Ro ~ P_{rot}/τ_c

In some stars, the Rossby number is good at describing their magnetic activity.

In general, τ_c is not measured directly.

Red giant star setup

Considerations

Red giant star setup Ingredients

We need to modify and/or add:

- Gravitational potential (Freytag, B., et al. (2002). Astron. Nachr. 323(3-4), 213-219),
- Slope-limited diffusion added for density field,
- A convective envelope by setting the value of the opacity (Kramers opacity law).

Re = 110, 112Co = 1.23, 1.25

Red giant star setup **Preliminary results**

Red giant star setup **Preliminary results and next steps**

Red giant star setup **Next steps**

We need runs with different rotation rates. Some problems had been found, 0

- 0 One way to fix this may be to reduce the
- How is the overshoot layer in these simulations?

luminosity,
$$\mathcal{F} \sim u^3$$
.

