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Consider a bipartite quantum systemHAB = HA ⊗HB
Alice can act by local operations inA, Bob inB. They can also call each other and communicate classically.

Local Operations and Classical Communication: LOCC operations

correlations betweenA,B can be classical or quantum

quantum correlations∼ quantum entanglement

Alice and Bob cannot produceAB-entangled states, someone else who has access toHAB must create them.
Alice and Bob can then operate on what is accessible to them.

From the point of view of Alice & Bob, entanglement is a resource which enables operations which would
otherwise be impossible for them. E.g. teleportation.

The diminishing of entanglement under LOCC can be quantified by monotones such as entanglement entropy.

LOCC also produces a partial order among quantum states called majorization.

Keski-Vakkuri WINQ workshop



HIPLogo

Background Motivation
Our work: summary only (caveats: not published yet)

Entanglement as a resource
Wealth distribution, majorization, monotonicity, resource theories
Side tour: new monotones
Resource theory for magic and Wigner negativity
Continuous majorization in quantum phase space

Consider a country, divide the population to n equal size parts, each having the fraction pi of total wealth,
i = 1, . . . , n. Let i = 1 label the richest part, i = n the poorest part. Thus p1 ≥ p2 ≥ · · · ≥ pn .

We can visually compare wealth distributions of different countries by Lorentz curves: consider the cumulative
fraction of wealth Sk =

∑k
i=1 pi at k = 1, 2, · · · , n. Points (k, Sk) span the Lorentz curve

AreasA&B above and below the curve define the Gini index = A
A+B

. Smaller value = more equality
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Distribution p = (p1, p2, · · · , pn) is more unequal than q = (q1, q2, · · · , qn) iff∑k
i=1 pi ≥

∑k
i=1 qi ∀k.

We say that p majorizes q, denoted p � q iff the above condition on partial sums is true.

Equivalently: the Lorentz curve of p is above the Lorentz curve of q.

Theorem (Hardy-Littlewood-Pólya)

Let p, q ∈ Rn probability vectors. The following are equivalent:

1 p � q (p majorizes q)

2 there exists a doubly stochastic∗ matrix S such that Sp = q (∗ : Sij ≥ 0,
∑
i Sij =

∑
j Sij = 1)

3
∑n
i=1 f(pi) ≥

∑n
i=1 f(qi) for all convex functions f : [0, 1]→ R.

Let ρ, σ be a pair of states of a quantum system, λ, µ their ordered eigenvalue vectors. We say that ρ majorizes σ,
ρ � σ iff λ � µ.
This defines a partial order among quantum states with

diag(1, 0, . . . , 0) � · · · � ρ � · · · �
1

d
diag(1, 1, . . . , 1)

Let |ψ〉, |χ〉 ∈ HAB be two pure states in a bipartite systemHAB = HA ⊗HB . We define

|ψ〉 � |χ〉 ⇔ trB [|ψ〉〈ψ|] = ρA � σA = trB [|χ〉〈χ|]
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If it is possible to convert a pure state |χ〉 to |ψ〉 by LOCC transformations, |χ〉 −→
LOCC

|ψ〉, entanglement can only

decrease. Then entanglement entropy decreases SEE(σA) ≥ SEE(ρA).

Nielsen’s theorem

|χ〉 −→
LOCC

|ψ〉 ⇔ |ψ〉 � |χ〉 ⇔ ρA � σA .

Majorization partial order thus gives thus a classification of bipartite entanglement among pure states!
Not only entanglement entropy decreases in LOCC:
A quantifier T (ρ) is Schur concave if ρ � σ ⇒ T (ρ) ≤ T (σ).
For example, Rényi entropies S(α)(ρ) = 1

1−α ln tr ρα are Schur concave ∀α > 0.

Related concept: T (ρ) is concave if

T (λρ + (1− λ)σ) ≥ λT (ρ) + (1− λ)T (σ) ∀λ ∈ [0, 1]

Concave⇒ Schur concave. S(α)(ρ) concave for α ∈ (0, 1).
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Related concept: T (ρ) is concave if

T (λρ + (1− λ)σ) ≥ λT (ρ) + (1− λ)T (σ) ∀λ ∈ [0, 1] (1)

Concave⇒ Schur concave. S(α)(ρ) concave for α ∈ (0, 1).
Recipe: Let f : [0, 1]→ R be smooth, concave. Then

Tf (ρ) = tr f(ρ)

is concave in the sense of (1).

Vidal’s theorem

Let Tf (ρ) be as in the above, and Tf (UρU†) = Tf (ρ) when U is unitary. Then Tf (ρ) defines an entanglement
monotone.

(Here I am shortcutting details about the construction, e.g. for mixed vs. pure states). Entanglement monotones have the
property that they are non-increasing under LOCC transformations (more generally than Schur concave quantifiers).
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A quantum channel E can be represented as an operator-sum

E(ρ) =
∑
i

EiρE
†
i (2)

where the Kraus operatorsEi satisfy
∑
i E
†
iEi = 1, or equivalently by the Stinespring dilation theorem

E(ρ) = trE [U(ρ⊗ ρE)U
†
] (3)

where U is unitary and ρE is an initial state of an environmentE.
A channel is unital if it satisfies E(1) = 1.

Uhlmann’s theorem of majorization

If E is a unital channel, then ρ � E(ρ).
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BEGIN SIDE TOUR: new sequences of monotones [Arias, de Boer, Di Giulio, EKV, Tonni, Phys. Rev. Res. 5 (2023) 4,
043082]

Define moments of shifted modular Hamiltonian

Mn(ρ, bn) = 〈(K + bn)
n〉ρ = tr[ρ(− log ρ + bn)]

n

which are concave for bn ≥ n− 1.

Von Neumann entropy isM1(ρ, 0).

By Vidal’s theorem they define an infinite sequence of entanglement monotones. In particular,

ρ � σ ⇒ Mn(σ, bn) ≥ Mn(ρ, bn)

Can convert Rényi entropies to these monotones, by

M
(n)

(ρ; bn) = e
b
(−1)

n dn

dαn
kα(ρ; b)|α=1,b=bn ,

where
kα(ρ; b) = exp

{
− αb + (1− α)S

(α)
(ρ)
}
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The inequalities can be rewritten in terms of cumulants of− log ρ.

The first cumulant = von Neumann entropy S(ρ), the second cumulant is capacityC(ρ), and so on

E.g. ρ � σ ⇒ M2(σ, 1) ≥ M2(ρ, 1) becomes a lower bound on entropy production depending on
decrease of capacity:

S(σ)− S(ρ) ≥
C(ρ)− C(σ)

S(ρ) + S(σ) + 2

A generalization of this approach gives monotones for other resource theories: e.g. for that of thermodynamics

Free operations: thermal operations (towards equilibrium) with fixed point with σ∗ = γβ ≡ exp(−βH)/Z

A relative majorization with fixed point γβ : "thermomajorization"

Construct and infinite sequence of relative monotones, expand inequalities with familiar quantities

Leads to e.g. to a finite-dimension correction to the Clausius inequality:

S(β)− S(ρ) ≥
1

kBT
[〈H〉β − 〈H〉ρ] +

C(ρ||γβ)

2 + 2β(Emax − F (β))
, (4)

〈H〉ρ non-equilibrium energy of ρ, 〈H〉β for thermal γβ , S(ρ) non-eq. entropy of ρ, and thermal entropy
S(β) = S(γβ),Emax max energy eigenvalue, F (β)= thermal free energy

Explored majorization for CFT states, monotonicity of c-functions fromC,M2 (cf. entropic c-functions from
alpha-entropies by Casini & Huerta, (accidental ?) monotonicity without SSA) END SIDE TOUR
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Resource theories are a general framework to characterize what happens to a resource or feature (e.g. entanglement)
under operations of interest

They consist typically of

{free states} (in resource theory of entanglement: separable states)
{free operations} mapping free states to free states (entanglement: LOCC)
{resource states} = ¬{free states} (entangled states)
{monotones} (ent. entropy, ent. Rényi entropies)
a partial order associated with free operations (majorization)
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Magic a/k/a non-stabilizerness

In DV quantum computing, Gottesman-Knill theorem says that all circuits that consist only of "easy gates"(Pauli
X,Y,Z, Hadamard H, phase S, CNOT), and certain types of state preparations, measurements, and classically
conditioned control can be efficiently simulated with a classical computer.

Easy operations generate Clifford group

Note: CNOT creates entanglement, not enough for quantum advantage. Need "hard gates" such as T or Toffoli
gates

Or: use Clifford operations together with a supply of magic states. The latter are then a resource for quantum
advantage.

The set of non-magical states reachable by Clifford operations, measurements, classical conditioning are called
stabilizer states.
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Resource theory of magic

free states = stabilizer states
free operations = Clifford operations + measurements, classical conditioning
resource states = magic states
monotones = mana, stabilizer Rényi entropy, ...
partial order = majorization of discrete Wigner functions
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Following Koukoulekidis and Jennings, npj Quantum Information (2022):

LetH = sp{|0〉, . . . , |d− 1〉} = sp{|k〉 | k ∈ Zd}, shiftX and clock Z operators

X|k〉 = |k + 1〉 ; Z|k〉 = ω
k|k〉 ; ω = e

2πi/d

Discrete phase space Γd = {z ≡ (p, q) ∈ Zd × Zd}, def. discrete displacement operator

Dz = τ
qp
X
q
Z
p

; phase τ = −ω1/2
,

one can generalize to n copiesHn wtih z ∈ Γnd , Dz = D⊗n
(p,q)

. They form the Heisenberg-Weyl group

HW
n
d = { τkDz : k ∈ Zd, z ∈ Γ

n
d } .

The set of unitary operators that normalizeHWn
d form the Clifford groupCnd . Define pure stabilizer states

STAB0 = {U|0〉〈0|U† : U ∈ Cnd }

and full set of stabilizer states STAB = {
∑
i pi|ψi〉〈ψi| : |ψi〉 ∈ STAB0 ∀ i}. Observe that

U : STAB → STAB for all U ∈ Cnd .
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For any z ∈ Γd define the phase point operator

Az =
1

d

∑
y∈Γd

ω
yTΩz

Dy

and now for any quantum state ρ its discrete Wigner distribution

Wρ(z) =
1

d
tr (Azρ) =

1

d2

∑
y∈Γd

ω
yTΩz

tr (Dzρ) .

Normalization ∑
z∈Γd

Wρ(z) = 1

and one can think ofW as a d2-dimensional vector (with components labelled by z ∈ Γd ≡ Zd × Zd).

For stabilizer states, all components ofW are non-negative:W is a probability vector,
for non-stabilizer states (=magic states)W has at least one negative component:W is a quasi-probability vector.
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Now for a resource theory of magic, choose

free operations: Clifford unitaries, Pauli measurements, classical conditioning
Consider here qudits with d=odd prime. Then in circuits with above free operations, all states with a positive
Wigner function admit an efficient classical simulation (Eisert-Mari, Veitch et. al)
free states F = {ρ : Wρ(z) ≥ 0 ∀ z ∈ Γd}
resource states: states with Wigner negativity
quantum channels E are dual to states, so they also admit a Wigner representationWE (y|z). Under the action
of the channel, Wigner functions transform by

WE(ρ)(y) =
∑
z∈Γd

WE (y|z)Wρ(z) .

if the channel involves free operations, the kernel is bistochastic:
∑
yWE (y|z) =

∑
zWE (y|z) = 1

Thus positivity of Wigner functions is preserved, and input Wigner function majorizes output Wigner function:

Wρ � WE(ρ)

majorization of states is ”Wigner majorization"
What if the input state is a resource state with Wigner negativity?
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Consider a quasiprob. vector p = (p1, . . . , pn) with p1 ≥ p2 ≥ · · · ≥ pn : most negative components are
at the end
The Lorentz curve is "heretic": it will overshoot 1 and come down to 1 only at the end

Koukoulekidis and Jennings extend the notion of majorization to quasiprobabilities: p � q it the Lorenz curve of
p is above that of q (even if heretic curves)
Thus also input resource states (Wigner) majorize output states under free operations, Wigner negativity can only
decrease
Monotone: note that

∑
z |Wρ(z)| ≥ 1 with> iff ρ is a resource state

def. manaM(ρ) = log(
∑
z |Wρ(z)|), can only decrease under free operations

KJ use this set-up for magic distillation protocols, and compute estimates for distillation rates
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Does any of this apply to QFTs?

One can discretize, e.g. Z3 parafermion CFT with c = 4/5 to 3-state Potts model, so now a qudit system (see
e.g. White, Cao, Swingle (2021), . . ., lots of "magic activity")

Alternatively, perhaps more natural to replace qudits by Fock space: move to continuous variable quantum
information

Our starting point: Z. Van Herstraeten, M. G. Jabbour, N. J. Cerf, "Continuous majorization in quantum phase
space", Quantum 7, 1021 (2023).

This paper considers applying continuous majorization of probability distributions in R2n to Wigner functions in
(continuous) phase space.
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Kong-Ming Chong 1974, Harry Joe 1987: Consider probability distributions f : R2n → [0,∞);
f(x) ≥ 0 ∀ x ∈ R2n ,

∫
d2nxf(x) = 1.

Define level-functionmf : R+ → R+ ,mf (t) = Vol({x ∈ R2n | f(x) ≥ t}): gives the volume of the domain
that contains the elements x such that f(x) ≥ t. Notemf (t) is non-increasing.

If two distributions f, g havemf = mg , we say f, g are level-equivalent

Define the decreasing arrangement f↓ of a function

f
↓
(u) = inf

{
s ∈ R+

∣∣∣∣ mf (s) 6 u

}
= m

−1
f (u) .

The decreasing arrangement is the continuous analogue of a rearranged probability vector (p1, p2, . . . , pn) (with
p1 ≥ p2 ≥ . . . ≥ pn ).
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Previously we considered partial sums Sk = p1 + p2 + . . . + pk . The continuous version is the integral

If (v) ≡
∫ v
0
f
↓
(u)du .

Points (v, If (v)) give the continuous version of the Lorentz curve of a probability distribution. We define

Definition: Continuous majorization

Given two probability distributions f, g, we say that f majorizes g, f � g iff

∫ v
0
f
↓
(u)du ≥

∫ v
0
g
↓
(u)du ∀ v ≥ 0 .

Most ordered: delta distribution, least ordered: e.g. gaussian distribution with variance σ →∞.
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Van Herstraeten, Jabbour and Cerf consider the state space bult byN pairs of annihilation/creation operators ai, a
†
i ,

i = 1, . . . , N corresponding toN pairs of quadrature operators qi, pi . For every state ρ one can define its Wigner
functionWρ(x) over the 2N -dimensional quantum phase space x = (q, p) ∈ ΓN = R2N . The Wigner function is
unit normalized, ∫

ΓN

W (x) = 1 .

A subset of statesW+ contains all the states whose Wigner function is non-negative everywhere. For these states the
Wigner function is a probability distribution, so we can apply continuous majorization. We then say that

Definition: Wigner majorization

Given two states ρ, σ ∈ W+ , we say that ρWigner majorizes σ iffWρ � Wσ .

VHJC consider the one-mode caseN = 1. Their main points are:

all pure states are level-equivalent with the Fock space vacuum |0〉
Wigner entropy and Wigner Rényi entropies are monotonic under Wigner majorization
Conjecture: the (equivalence class of) vacuum Wigner majorizes (the equivalence class of) every other Wigner
positive state.
They test the conjecture with the family ρ = (1− p1 − p2)|0〉〈0| + p1|1〉〈1| + p2|2〉〈2| and find the
conjecture works.
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Our work: main results (so far)

A simple criterion for theN -mode case: ρWigner majorizes σ if and only if det γρ ≤ det γσ , where γρ is the
covariance matrix of ρ

A proof of the VHJC conjecture for the convex hull oflN -mode Gaussian states

In the one-mode case, Wigner majorization is equivalent with usual majorization (and not whenN > 1)

For Gaussian channels, for Gaussian input states always a majorization relation between the input and output,
but the relation can be both ways

For Wigner negative input, output cannot majorize input

Gaussian channels E characterized by matrix pairX, Y : Wigner functions map

WE(ρ)(x) =

∫
dy kE (x, y)Wρ(y

′
)

with a channel-associated kernel kE satisfying

∫
dx kE (x, y) = 1 ;

∫
dy kE (x, y) =

1

detX
.

Can see a big difference to the discrete case: the kernel is generally not bistochastic (only "column stochastic")
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results (continued)

Two candidates for extension of the concept of Wigner majorization to all bosonic states

Both versions imply the monotonicity of logarithmic Wigner negativityM(ρ) = log(
∫
Γ dx|Wρ(x)|)

For channels with detX = 1 (classical mixing channel), the input state (even a Wigner negative one) always
Wigner majorizes the output state

Generalizes to all random displacement channels, even all random Gaussian unitary channels (need to double
check): a version of Uhlmann’s theorem for Wigner majorization in phase space. (Note: since these channels are
unital, also original Uhlmann applies: input majorizes output also in the usual sense)

For all bosonic states and all bosonic channels, between the input and output state an inequality

(detX)
α−1

∫
dx|Wout(x)|α ≤

∫
dx|Win(x)|α ∀α ≥ 1 ,

generalizing the monotonicity of Wigner negativity (but with a channel-dependent correction term).

CV case is more involved than discrete. Has "more hierarchy": Gaussian states, convex hull of Gaussian states,
Wigner positive states, "stellar rank"

For resource theory of Wigner negativity, free operations should be Wigner positive, but those harder to classify
than Gaussian operations. Perhaps we can have some progress in that ...
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THANK YOU!
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