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Studying who-infected-whom
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Studying who-infected-whom
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Q: What can we learn from the

pattern of who-infected-whom? (Rogers, 1962), (Zhang et al., 2017)



Mutant contagion

What is the expected impact of mutant disease strains?

Our study in Phys. Rev. Research: (Juul & Strogatz, 2020) ikl



The Next Spanish Flu

1918: Spanish flu came in 3 waves
One was (much) more deadly
Summer wave gave some immunity
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The Next Spanish Flu

e 1918: Spanish flu came in 3 waves

e One was (much) more deadly

e Summer wave gave some immunity

Q: How widespread would we

expect a mutant strain to
become?
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The Next Spanish Flu

e 1918: Spanish flu came in 3 waves

e One was (much) more deadly

e Summer wave gave some immunity

Q: How widespread would we

expect a mutant strain to
become?

(Our 2019 motivation: The experts say a
pandemic will happen sooner or later...)
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Descendants in epidemics

(a) Contagion spreading on contact network
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Our study: (Juul & Strogatz, 2020)



Descendants in epidemics

(a) Contagion spreading on contact network
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Descendants in epidemics

(a) Contagion spreading on contact network
t=0 t=1
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(b) Epidemic tree
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Descendants in epidemics

Q: Picking a node uniformly at random, what is
the chance of it having d descendants?




Simulations and theory
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Simulations and theory
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Simulations and theory
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Why? Because all these networks are (effectively)
infinite-dimensional... [Definition: Surface area
and volume of ball grow equally fast on network.]

Bad news: A tail scaling of d? means that the
mutant’'s expected impact diverges!

Worse news: Real-world social networks are
(effectively) infinite-dimensional too.

Prediction: Same tail scaling law should exist for
contagion in real-world networks.
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substrate of the network of friendship ties. While there are other en-
vironments where memes flourish, those memes that do enter Face-
book can be examined in detail, uncovering mechanisms previously
difficult—or impossible—to study.

They study mutating memes on Facebook
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Online diffusion

Does false news spread farther, faster, deeper, and more
broadly than the truth?

Our study in PNAS: (Juul & Ugander, 2021) &




Online diffusion

How people study spreading:

Video Petition

>

Compare “cascades”
(rooted, directed trees)

Track spreading online

o009

(Liben-Nowell and Kleinberg, 2008; Golub and Jackson, 2010; Goel et al, 2012; Goel et al., 2016; Vosoughi et al., 2018; Zhao et al., 2020)



True and false news on Twitter.

Vosoughi et al. studied all verified false or true news on Twitter. Reported:

False news spreads Farther, faster, deeper and more broadly than the truth
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Content types on Twitter.

Goel et al. studied news, videos, pictures and petitions spreading on Twitter:

Reported that petition cascades are deeper and more viral than other content.
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Content types on Twitter.

Goel et al. studied news, videos, pictures and petitions spreading on Twitter:

Reported that petition cascades are deeper and more viral than other content
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True and false news on Twitter.

Cascade features are not independent.

We expect larger cascades to be

e Broader

e Deeper

e Have higher mean pairwise distance
o (Faster?)

Q: Do size differences drive observations?

Test: Ensure identical sizes when comparing.

o010



True and false news on Twitter.

Vosoughi et al. studied all verified fFalse or true news on Twitter. Reported:

False news spreads Farther, faster, deeper and more broadly than the truth
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True and false news on Twitter.

Vosoughi et al. studied all verified fFalse or true news on Twitter. Reported:

False news spreads farther, faster, deeper and more broadly than the truth.
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True and false news on Twitter.

Goel et al. studied news, videos, pictures and petitions spreading on Twitter:

Reported that petition cascades are deeper and more viral than other content.
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True and false news on Twitter.

Goel et al. studied news, videos, pictures and petitions spreading on Twitter:

Reported that petition cascades are deeper and more viral than other content.
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True and false news on Twitter.

Vosoughi et al. studied all verified fFalse or true news on Twitter. Reported:

False news gets bigger but there is no significant difference between false and
true cascades of the same size.

Q: What does this tell us about the diffusion rules?
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So what does this tell us?

Create cascades using 2 different models.

On infinite cliques both have just 1 parameter, RO (the infectiousness).

Susceptible-Infectious-
Recovered Independent Cascade

Q: What happens when comparing v
cascades created with different R0O?




Model simulations (SIR and IC)

Each dataset: 30,000 simulated cascades.
Each model: 2 values of RO

SIR vs. SIR
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Model simulations (SIR and IC)

Each dataset: 30,000 simulated cascades.
Each model: 2 values of RO
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Model simulations (SIR and IC)

Each dataset: 30,000 simulated cascades.
Each model: 2 values of RO

SIR vs. SIR
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Model simulations (SIR and IC)

Each dataset: 30,000 simulated cascades.
Each model: 2 values of RO

SIR vs. SIR
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Model simulations (SIR and IC)

Each dataset: 30,000 simulated cascades.

Each model; 2 values of RO

IC vs. IC

SIR vs. IC
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Model simulations (SIR and IC)

Theorem 1. (SIR and IC model) Let Psir(T|s, Ro) and
Pic(T|s, Ro) denote the probability of obtaining the tree T when
growing a self-terminated cascade of size s on the infinite clique
using the Susceptible-Infectious-Recovered (SIR) model with
parameter Ry = r1/rr or the Independent-Cascade (IC) model
with parameter Ry, respectively. Then both Psir(T|s, Ro) and
Pic(T|s, Ro) are independent of Ry.



Model simulations (SIR and IC)

A B
Theorem 1. (SIR and IC model) Let Psin(T|s, Ro) and '
Pic(T|s, Ro) denote the probability of obtaining the tree T when
growing a self-terminated cascade of size s on the infinite clique
using the Susceptible-Infectious-Recovered (SIR) model with

parameter Ro = r1/rr or the Independent-Cascade (IC) model

with parameter Ry, respectively. Then both Psir(T|s, Ro) and / \ '

Pic(T|s, Ro) are independent of Ry.

In words: A higher Ro makes larger cascades S
. . To create A and B with SIR, you need exactly
more likely. But if we look only at cascades S 3 infoction events
et . H H H - 4 removal events.
of a specific size s, any SIR simulation will create R el Sl N
any cascade, C, with identical probablllty to infect and get removed determines whether

A or B is created. RO influences the likelihood

Same for IC model. of these events, but not the ordering.




Model simulations (SIR and IC)

Is this what is going on for false/true news data?

If distributions over trees are identical, so are degree distributions

10° 10° 10°
A B C
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Out-degree+1

Our study: (Juul & Ugander, 2021)



Growing cascades

What can we tell about contagion while it is still spreading?

Our study is currently in preparation: (Juul & Ugander, ?) &




Growing cascades

Theorem 1. (SIR and IC model) Let Psir(T|s, Ro) and
Pic(T|s, Ro) denote the probability of obtaining the tree T when
growing| a self-terminated cascade of size s |0n the infinite clique
using the Susceptible-Infectious-Recovered (SIR) model with
parameter Ry = r1/rr or the Independent-Cascade (IC) model
with parameter Ry, respectively. Then both Psir(T|s, Ro) and
Pic(T|s, Ro) are independent of Ry.

It would be great to understanding
contagion before it stops spreading!



Growing cascades

Theorem 1. (SIR and IC model) Let Psir(T|s, Ro) and
Pic(T|s, Ro) denote the probability of obtaining the tree T when
growing| a self-terminated cascade of size s |0n the infinite clique
using the Susceptible-Infectious-Recovered (SIR) model with
parameter Ro = r1/rr or the Independent-Cascade (IC) model
with parameter Ry, respectively. Then both Psir(T|s, Ro) and
Pic(T|s, Ro) are independent of Ry.

It would be great to understanding
contagion before it stops spreading!

Q: If we observe A and B, and

they are still growing, can we
tell if they are results of
different contagion processes?



(Slides with preliminary results excluded)



Conclusions

Cascade structure can indicate infectiousness, mutant impact.

Even without an advantage in infectiousness, the impact of a mutant strain is
expected to be very large.

Although false news does spread farther, faster, deeper and more broadly
than the truth, these differences seem to be driven by size-differences.

Not so for differences between cascades of petitions, videos, pictures, news.

2 different analyses indicate that attempts to limit spread of false news
should focus on limiting the mean “infectiousness” of the false news.

Other ongoing studies:
- Using cascade structure to understand the importance of

superspreaders (see (Goel et al., 2016))
- Cascade structure of the COVID-19 epidemic in Denmark
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