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Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
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based on some relation.
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Encapsulation, Overlap, and Line Graphs of Hypergraphs
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Why encapsulation DAGs?

e Number of edges — total number of encapsulation relationships
e Proportion of the maximum DAG edges — “distance” from simplex assumption
e DAG out-degree — extent to which each hyperedge encapsulates other hyperedges

e DAG shortest paths — “shallow” versus “deep” encapsulation

How can these quantities characterize hypergraph data?



DAG Out-degree

Maximum
encapsulation

e Indicates how many hyperedges e encapsulates
e Maximum is the size of the powerset of e
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Layer Randomization

Idea: Shuffle node labels within each size layer
Randomizes:
— Encapsulation and overlap relationships

— Labeled node-degree distributions within and across
size layers

— Unlabeled node-degree distribution across layers
Preserves:
— Hyperedge size distribution

— Unlabeled node-degree distribution within layers
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Layer Randomization

Idea: Shuffle node labels within each size layer
Randomizes:
— Encapsulation and overlap relationships

— Labeled node-degree distributions within and across
size layers

— Unlabeled node-degree distribution across layers
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— Hyperedge size distribution

— Unlabeled node-degree distribution within layers
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Layer Randomization

Idea: Shuffle node labels within each size layer
Randomizes:
— Encapsulation and overlap relationships
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Rooted path length distribution in the
transitively reduced DAG

Roots — nodes (hyperedges) with no
in-degree (facets)




Paths through DAGs
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Paths through DAGs
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Paths through DAGs
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Real hypergraphs have encapsulation structure.

How can this structure affect dynamics?
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Dynamics on hypergraphs

Node-based Threshold
Dynamics

t+2

A node becomes active if it participates
in a hyperedge where more than a
threshold of nodes become active.
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Dynamics
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A node becomes active if it participates
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Node-based Threshold
Dynamics

t+4

A node becomes active if it participates
in a hyperedge where more than a
threshold of nodes become active.



Dynamics on hypergraphs
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Dynamics on hypergraphs

Nodes and edges in binary state, active
or inactive

Activation flows upward from smallest
to largest
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to largest

e Hyperedges of size k influenced
only by DAG neighbors of size k-1
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Dynamics on hypergraphs

Nodes and edges in binary state, active
or inactive

Activation flows upward from smallest
to largest

e Hyperedges of size k influenced
only by DAG neighbors of size k-1

e Threshold 7: all existing k-1st order
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Dynamics on hypergraphs

o _ (Strict) Encapsulation Dynamics
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than a threshold of its encapsulated
hyperedges becomes active.




Dynamics on hypergraphs

Nodes and edges in binary state, active
or inactive

Activation flows upward from smallest
to largest

e Hyperedges of size k influenced
only by DAG neighbors of size k-1

e Threshold 7: all existing k-1st order
hyperedges

e Strict: Node-state has no influence
unless node is a hyperedge

Seed hyperedges placed either uniformly
random or smallest first

(Strict) Encapsulation Dynamics

o (]
t

o o
k=5
l l k=4
k=3

o o

t+1

(o) o) k=2

A hyperedge becomes active if more
than a threshold of its encapsulated
hyperedges becomes active.




Dynamics on hypergraphs

Nodes and edges in binary state, active
or inactive

Activation flows upward from smallest
to largest

e Hyperedges of size k influenced
only by DAG neighbors of size k-1

e Threshold 7: all existing k-1st order
hyperedges

e Strict: Node-state has no influence
unless node is a hyperedge

Seed hyperedges placed either uniformly
random or smallest first

(Strict) Encapsulation Dynamics

o (]
t

o o
k=5
l l k=4
k=3

o ]

t+2

(o) o) k=2

A hyperedge becomes active if more
than a threshold of its encapsulated
hyperedges becomes active.
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(Campfire) Dynamics on

Analogy to lighting a campfire: the
smallest fuel must be lit before the
logs can catch on fire!

Image: https://www.pelican.com/us/en/discover/pelican-flyer/post/how-to-start-a-campfire/

Correspond to a type of
coordinated behavior where
nodes not only share
goals/opinion/information, but
coordinate to pass to other groups
they are embedded within.

nypergraphs

(Strict) Encapsulation Dynamics
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A hyperedge becomes active if more
than a threshold of its encapsulated
hyperedges becomes active.




Random Nested Hypergraph Model

Idea: Start from a fully encapsulated hypergraph
(simplicial complex), then selectively rewire
hyperedges to destroy encapsulation
relationships

Parameters:
N: Number of nodes
s,,; Maximum size hyperedge
H_: Number of hyperedges of size s

€.: 1 minus probability of rewiring
hyperedge of size s

Procedure:

1. Generate random hyperedges of size s _
and all of their subhyperedges (power
set)

2. For each hyperedge of size s <s_, rewire
with probability €_

Contagion dynamics on hypergraphs with nested hyperedges

Jihye Kim, Deok-Sun Lee, and K.-I. Goh
Phys. Rev. E 108, 034313 — Published 28 September 2023

Rewiring works by choosing a pivot
node to keep, then randomizing other
nodes by choosing nodes that are not
in supersets of the original hyperedge.



Random Nested Hypergraph Model

Overlap Structures for Varying &

£,=1.0,63=0.0

£,=1.0,e3=1.0 £,=1.0,63=0.5

s=4 o0
s=3 ////7%2;{&3‘

9 aRRed
s=2 :
s=4
s=3
s=2
s=4
s=3




Random Nested Hypergraph Model

Overlap Structures for Varying &

£,=1.0,e3=1.0 £,=1.0,63=0.5

£,=1.0,63=0.0

In strict encapsulation

dynamics, activation

can only spread up
the black edges!



Simulation Results

Average results over 50 strict encapsulation dynamics
simulations on 50 RNHM realizations
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Simulation Results

Uniform seeding:

Even with high proportion of nodes
activated, only 50% of edges
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Simulation Results

Uniform seeding:

e Even with high proportion of nodes
activated, only 50% of edges

Smallest first seeding:

e \When no hyperedges are rewired,
full hypergraph becomes activated
(trivial but important)

e Even though nodes are activated
by definition, all hyperedges do not
become active. Key distinguishing
feature from node-based threshold
dynamics.
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Simulation Results

Uniform seeding:

e Even with high proportion of nodes
activated, only 50% of edges

Smallest first seeding:

e \When no hyperedges are rewired,
full hypergraph becomes activated
(trivial but important)

e Even though nodes are activated
by definition, all hyperedges do not
become active. Key distinguishing
feature from node-based threshold
dynamics.

These dynamics correspond not just to
node influence, but to coordinated
behavior!
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Simulation Results

Avg. Proportion Edges Activated
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Empirical Simulation Results

Strict Encapsulation Dynamics, 25 steps, T =all
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Empirical Simulation Results
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Thank you!

Contact
larock@maths.ox.ac.uk
https://www.tlarock.qithub.io

Code: @tlarock on GitHub

https://www.qithub.com/tlarock/encapsulation-dynamics
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