Displaced ALP decays to photon pairs at the LHC
 Christian Ohm (KTH)

OKC BSM meeting, March 30, 2023

ATLAS experiment

Particle identification

Particle identification

Particle identification

- In practice though, many photons convert to $e^{+} e^{-}$pairs when traversing detector material - ranging from 20% to 65% depending on the pseudorapidity η

Particle identification

- In practice though, many photons convert to $e^{+} e^{-}$pairs when traversing detector material - ranging from 20% to 65% depending on the pseudorapidity η
- This is exploited in the strategy described in the paper: "depending on the angle, up to ~ 50% of photons convert before they leave the tracker"

Particle identification

- In practice though, many photons convert to $e^{+} e^{-}$pairs when traversing detector material - ranging from 20% to 65% depending on the pseudorapidity η
- This is exploited in the strategy described in the paper: "depending on the angle, up to ~ 50% of photons convert before they leave the tracker"
- Relies on the conversion happening early enough that tracks can still be reconstructed from the hits generated downstream of the decay.

Particle identification

- In practice though, many photons convert to $e^{+} e^{-}$pairs when traversing detector material - ranging from 20% to 65% depending on the pseudorapidity η
- This is exploited in the strategy described in the paper: "depending on the angle, up to ~ 50% of photons convert before they leave the tracker"
- Relies on the conversion happening early enough that tracks can still be reconstructed from the hits generated downstream of the decay.
- We'll come back to this!

Inner Detector and tracking

Calorimeters

Calorimeters

Calorimeters

Photon (and electron)
 reconstruction

What about displaced photons?

Recent search using displaced photons

Search for Higgs decaying to long-lived NLSPs, in turn each decaying to a photon and an LSP ($\left.\rightarrow p_{\mathrm{T}}^{\text {miss }}\right)$

Exploits two key photon characteristics:

- "Non-pointing", i.e. does not point back to primary vertex
- Delayed due to massive NLSP + longer flight path

Recent search using displaced photons

Recent search using displaced photons

Challenges

- Kinematics in ALP case in paper quite different, with $m_{\mathrm{ALP}} \lesssim 1 \mathrm{GeV}$, produced with high $p_{\mathrm{T}} \Rightarrow$ significant boost
- Small opening angle between photons
- No significant delay in photon energy deposit

Challenges

Figure 4: The $r-z$ distribution of the differential number of radiation lengths, $\Delta N_{X_{0}} / \Delta r$, for the updated geometry model of a quadrant of the inner detector barrel region of the pixel detector and the SCT. The simulated material is sampled for each z-position along a straight radial path (perpendicular to the beam line).

What chance is there that both photons would convert early enough in the ID such that the DV of the ALP can be reconstructed?

Challenges

Huge number of high-pT hadrons created in collisions, and they also undergo hadronic interactions in the detector material $\rightarrow>$ displaced vertices where there is material, just like the photons, with variable number of hadrons instead of $e^{+} e^{-}$

What about π^{0} ? They would be produced here, and decay primarily to $\gamma \gamma \ldots$

