

WEIZMANN INSTITUTE OF SCIENCE

Analytic Description of Beta-Decay Electron Thermalization in Kilonovae Ejecta

Radiative Transfer and Atomic Physics of K

Stockholm

Sep. 4-7, 2023

Ben Shenhar, Or Guttmann, Eli Waxman

06.09.2023

Kilonovae,	
ן	

Thermalization

- • $t_{loss}(E, t)$ energy-loss timescale of decay product.
- Initially for all decay products (excluding neutrinos) $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum \dot{Q}_{\mu}$
 - Electron that is emitted immediately loses all its energy \equiv Efficient Thermalization

But over time
$$t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$$

• Electron gradually loses its energy \equiv Inefficient Thermalization

•Interpreting kilonovae observations requires understanding the thermalization of decay products (for

 $t \gtrsim 1 - 2$ days, γ -particles mostly escape, leaving e, α -particles as main heating source. Fission?)

- Thermalization depends on:
 - •ejecta mass, velocity (Metzger+2010, Barnes+2016, Kasen+2019)
 - Composition (Y_{ρ}, s_0)
 - nuclear physics inputs (Zhu+2021, Barnes+2021)
- •Research Goal:
- parameters
- •What we found:
 - compositions (Y_e, s_0) .
 - Largely robust to nuclear physics uncertainties.
 - Results can be used to constrain ejecta mass and velocity from measurements, "inverse problem" approach •

To derive an analytical description for electron thermalization that is valid for a wide range of ejecta

• t_{ρ} - inefficient thermalization timescales - are primarily dependent on ρt^3 of ejecta, with small corrections for different

Outline of Our Work

- Ran nuclear-reaction network SkyNet for different homologously expanding ejecta of uniform densities – discussed in next slide.
- Computed time-dependent energy released by electrons, including spectra (BetaShape, Mougeot 2017)
- Defined and calculated instantaneous energy deposition + full energy deposition of electrons (under assumption of electron confinement due to weak magnetic fields)
- Define and calculate t_e inefficient thermalization timescales.
 - Find analytic description for $t_e(\rho t^3)$ with weak dependence on Y_e, s_0
 - Using these, provide analytical interpolating functions for deposition \dot{Q}_{den}^{interp}

Nucleosynthesis Calculations

• SkyNet calculates NSE for initial TD conditions of ejecta as input (either $\{Y_e, s_0, T_0\}$ or $\{Y_e, \rho_0, T_0\}$).

Evolves network using density history: $\rho(t) = \begin{cases} \rho_0 e^{-t/\tau} & \text{for } t \leq 3\tau \\ \rho_0 \left(\frac{3\tau}{et}\right)^3, & \text{otherwise} \end{cases}$

- Altogether 4 parameters must be specified: $\{Y_{e}, s_{0}, T_{0}, \tau\}$
- Lack of uniformity in the community (different T_0, τ)
- We seek to examine influence of ρt^3 , Y_e , s_0 of ejecta on thermalization.
 - Initialize SkyNet with Y_e , s_0 , $T_0 = 10 \,\text{GK} \xrightarrow{EoS} \rho_0$
 - ρ_0 , $\rho t^3 \rightarrow \tau$, using density history
 - Taking different T_0 would give different τ , but nucleosynthesis will be equivalent!
- Parameter Range ($T_0 = 10$ GK for all runs):
 - $1 \le s_0 \le 10^2 [k_b/\text{baryon}]$, semi-linearly spaced. (from simulations, $s_{0,avg} \approx 10 20 [k_b/\text{baryon}]$)
 - $0.05 \leq Y_e \leq 0.45$, linearly spaced.

• $10^{-3} \le \rho t^3 \le 10^2$ in units of $(\rho t^3)_0 = \frac{0.05M_{\odot}}{4\pi (0.2c)^3}$, logarithmically spaced.

Electron Energy Losses

Figure 1: Energy loss rate of electrons propagating in a singly ionized $\chi_e = 1$ Xe plasma (Z = 54, A = 131). We take $\hbar \omega_p = 10^{-7} eV$. Shaded area shows typical average initial energies of β -decay electrons. For most relevant energies, ionization losses dominate.

- Time-dependent, mass-weighted composition: $\left(\frac{dE}{dX}\right)_{tot} = \sum_{iso} A_{iso} Y_{iso} \left(\frac{dE}{dX}\right)_{i}$
- **Ionization Losses dominate the** energy loss
 - Used Bethe-Bloch formula, with I from Segré 1977

Energy Deposition Description

Instantaneous Deposition

• Fraction of energy instantaneously deposited by electron with initial E_i at time *t* is approximated as:

•
$$f_{dep}(E_i, t) = \begin{cases} 1 & \text{for } t_l \leq t \\ \frac{t}{t_l} & \text{for } t_l \geq t \end{cases}$$

• Where $t_l(E_i, t) = E_i \left(\frac{dE}{dt}\right)^{-1}$ is the energy loss timescale, and $\frac{dE}{dt} = \rho v \frac{dE}{dX}.$

• Total instantaneous deposition calculated as:

$$f_{tot}^e(t) = \frac{\dot{Q}_{inst}}{\dot{Q}_e} = \frac{1}{\dot{Q}_e} \int f_{dep}(E,t) \cdot E \frac{d\dot{N}_e(E,t)}{dE} dE$$

• We define t_{ρ} as the time for which:

 $f_{tot}(t_e) \equiv 1 - e^{-1}$

Delayed Deposition

Also calculated full, delayed energy deposition :

$$\dot{Q}_{dep}(t) = \int dE \frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$$

• $\frac{dN}{dE}(E, t)$ is the electron distribution, dictated

by:
$$\frac{\partial}{\partial t} \left(\frac{dN}{dE} \right) = -\nabla_E \left(\dot{E} \frac{dN}{dE} \right) + \dot{N}(E, t)$$

•
$$\dot{E} = -x\frac{E}{t} - \rho v \frac{dE}{dX}$$

(ad. losses + stopping-power), x = 1,(2) for UR, (NR)

Instantaneous vs. Delayed Deposition

- Top (bottom) row $s_0 = 20$, (60) k_b /baryon • $--\dot{Q}_{\beta} - e^{\pm}$ energy release • $---\dot{Q}_{dep}$ - full deposition • $.....\dot{Q}_{inst}$ - inst. deposition • blue: $\rho t^3 [(\rho t^3)_0] = 10^{-1}$
- green: $\rho t^3 [(\rho t^3)_0] = 1$
- red: $\rho t^3 [(\rho t^3)_0] = 10$
- $\dot{Q}_{inst} > \dot{Q}_{dep}$ for $t < t_e$ (ad. losses)
- $\dot{Q}_{dep} \sim t^{-2.85}$ for $t \gg t_e$ (Waxman et al. 2019)
 - adiabatic losses dominate
- t_e captures \dot{Q}_{dep} transition to inefficiency (up to factor ~ 2)

 $t_{\rho}(\rho t^{3})$

•
$$t_e \propto \left((\rho t^3) E_i^{-1} \frac{v_e}{c} \frac{dE}{dX} \right)^{1/2}$$
, where

• $< E^{-1/2} > ^{-2}$ is correct char. energy of t_e , not < E >

• Leading dependence: $t_{\rho} \propto (\rho t^3)^{1/2}$

E_i is the initial energy of beta electrons.

• If $\langle E_{\beta} \rangle \propto t^{-k}$ as often assumed, then $\frac{d\log(t_e)}{d\log(\rho t^3)} \ge 1/2$

 $t_{\rho}(\rho t^3)$, 3 Regions in $\{Y_{\rho}, s_0\}$ Space

Broken power-law description:

$$t_{e} = t_{0} \begin{cases} \left(\frac{\rho t^{3}}{0.5(\rho t^{3})_{0}}\right)^{a_{1}} \text{days} & \text{for } \rho t^{3} < (\rho t^{3})_{0} \\ \left(\frac{\rho t^{3}}{0.5(\rho t^{3})_{0}}\right)^{a_{2}} \text{days} & \text{for } \rho t^{3} > (\rho t^{3})_{0} \end{cases}$$

• Analytic estimate accurate to $\sim 20\%$, at

worst

	Eject	Fitted Parameters			
	Ye	$s_0 [k_b/\text{baryon}]$	a_1	a_2	$t_{e,0}$ [day
Region I	< 0.22	$\forall s_0$	0.5	0.37	19.5
Region II	> 0.22	> 55	0.5	0.42	19.4
Region III	> 0.22	< 55	0.5	0.5	16.3

- Region I: Robust 3rd-peak
- Region II: mostly up to 2nd-peak
- Region III: some 1st-peak

Electron Characteristic Energy Release

• For $0.15 \le Y_e$, $< E^{-1/2} >^{-2}$ rises at $t \gtrsim 15$ days

•
$${}^{94}\text{Os} \xrightarrow{t_{1/2} \approx 6 \text{ yr}} {}^{94}\text{Ir} \xrightarrow{t_{1/2} \approx 20 \text{ hr}} {}^{94}\text{Ir} \xrightarrow{t_{1/2} \approx 20$$

- Example of "inverted decay-chain"
- Other inverted chains active,

A = 140, 132, 106,etc.

Overall, 40 inverted chains with

$$\tau_{1/2}^d < 10^2 \times \tau_{1/2}^p$$
 of parent isotope

$\dot{Q}_{dep}^{int}(t)$ – Interpolating Function for Deposition Region I: $Y_e < 0.22$

$$\dot{Q}_{\text{early}}(t) \equiv \dot{Q}_{\beta}(t) \times \left(1 - \exp\left[-\left(\frac{t}{t_e}\right)^{-n_1}\right]\right)$$

$$\dot{Q}_{\text{late}}(t) \equiv \dot{Q}_{\text{early}}(t=t_D) \times \left(\left(\frac{t}{t_D}\right)^{-5\cdot 3} + \left(\frac{t}{t_D}\right)^{-3n_2} \right)$$

$$\dot{Q}_{dep}^{int}(t) = \left(\dot{Q}_{early}^m + \dot{Q}_{late}^m\right)^{1/m}$$

	Ejecta Parameters		Interpolation Parameters			
	Y _e	$s_0 [k_b/\text{baryon}]$	m	n ₁	n_2	$t_D[t_e]$
Region I	< 0.22	$\forall s_0$	4.5	1.1	2.8	1.3
Region II	> 0.22	> 55	0.8	0.5	2.5	1.3
Region III	> 0.22	< 55	1.5	0.5	2.8	1.3

• Accurate to within factor \sim 2 over 4 orders-ofmagnitude change in \dot{Q}_{β} .

1/3

Delayed Deposition with Interpolation

 Top (bottom) row $s_0 = 20$, (60) k_b /baryon • $--\dot{Q}_{\beta} - e^{\pm}$ energy release - \dot{Q}_{dep} - full deposition • \dot{Q}_{dep}^{interp} - interpolating dep. • blue: $\rho t^3 [(\rho t^3)_0] = 10^{-1}$ • green: $\rho t^3 [(\rho t^3)_0] = 1$ • red: $\rho t^3 [(\rho t^3)_0] = 10$

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition (esp. for low Y_e)
- Vary nuclear physics inputs:
 - Every theoretical rate $\lambda \rightarrow C\lambda$, where $C \in [10^{-2}, 10^2]$ (~70,000 rates, ~90%)
 - Rerun nuclear networks ~100 times
 - Check for FRDM and UNEDF1 massmodels.
- t_e remains robust

Key Takeaways

- $t_{\rho}(\rho t^3)$ broken power-law, small corrections for different compositions (Y_{ρ}, s_0) .
 - Robust to nuclear physics uncertainties
 - range of ejecta parameters

- Understanding thermalization in future measurements mainly constrains ρt^3
 - problem approach"
- $< E_{\beta} >$ does not steadily decline over time "inverted decay-chains"
- Will be on the arXiv soon!

• Interpolating function for deposition \dot{Q}_{dep}^{interp} - easy implementation in kilonovae calculations for wide

• Semi-analytic approach enables us infer ejecta parameters from future measurements - "inverse

• For $t \gtrsim 10 - 15$ days, β -emission is not dominated by isotopes with $\tau_{1/2} \sim t$ (for most Y_e values)

Thank You!

