The Thermalization of $\gamma\text{-}\mathrm{rays}$ in Kilonovae

Or Guttman*, Ben Shenhar, Arnab Sarkar and Eli Waxman

Weizmann Institute of Science

The Radiative Transfer and Atomic Physics of Kilonovae Sep 5, 2023

*or.guttman@weizmann.ac.il

• UVOIR observations of Kilonovae will be key for constraining the properties of matter ejected from NSMs.

To this end, robust light curve modeling is essential.
 A key component is the energy deposition process of radioactive decay products (mainly γ, e⁻) which powers the transient.

In la SNe t₀ (hereafter t_{γ,eff}), the time at which γ-ray energy start to escape deposition, is an observable feature and a useful probe of the ejecta.

In this work we focus on the $\gamma\text{-ray}$ heating in KNe, and:

- Find $t_{\gamma,\text{eff}}$ for a wide range of ejecta properties (Y_e , s_0 and M, v) and test its sensitivity to nuclear physics uncertainties.
- Give a semi-analytic method for calculating the γ -ray heating for any density profile $\rho(\mathbf{v})$.
- Present a simple analytic approximation method, and apply it for spherical KNe.

Our method assume uniform composition, but can be extended to non-uniform composition.

Modeling of the e^{\pm} heating - in Ben Shenhar's talk tomorrow.

$\gamma\text{-}\mathrm{ray}$ thermalization in a nutshell

 $\gamma\text{-rays}$ lose energy by:

- Photo-electric effect (PE): low energies (<few 100keV) and high Z.
- Compton scattering: intermediate energies (\sim 1MeV), roughly Z-independent ($\propto \frac{Z}{A}$).
- Pair-production (PP): high energies (> few MeV) and high Z.

$\gamma\text{-}\mathrm{ray}$ thermalization in Ia SNe

In Ia SNe, the Z of the ejecta is relatively low (Z ≤ 30):
 PE is weak, Compton scattering is dominant over a wide energy range around 1MeV.

• The γ -rays from ⁵⁶Ni and ⁵⁶Co "see" energy deposition opacity due to Compton: $\kappa_{\gamma,\text{eff}} \approx \langle \kappa_{\gamma,E} \rangle \approx 0.025 \text{cm}^2 \,\text{gr}^{-1}$ (Swartz et al 1995, Jeffery 1999)

• For an ejecta with column density $\langle \Sigma \rangle \sim \frac{M}{4\pi v^2 t^2}$,

 $t_{\gamma,\text{eff}} = \sqrt{\kappa_{\gamma,\text{eff}}} \underbrace{\langle \Sigma \rangle t^2}_{\text{constant}} \rightarrow \text{probes the column density of the ejecta } (\sim M/v^2).$

(e.g. Wygoda et al 2019)

$\gamma\text{-}\mathrm{ray}$ thermalization in KNe

In KNe, depending on initial conditions (mainly Y_e), Z of the ejecta changes & reaches ~70. PE dominates and increases the opacity at ≤ 1 MeV.

Also, heavier elements tend to emit softer γ -rays.

(Hotokezaka & Nakar 2020)

 \rightarrow PE may cause $\kappa_{\gamma,\text{eff}}$ to be larger and Y_e-dependent - a potential probe of the R-process?

Some past works took $\kappa_{\gamma,\text{eff}} \approx 0.025 \text{cm}^2 \text{gr}^{-1}$ for all Y_e as in Ia SNe (Hotokezaka et al 2016, Kasen & Barnes 2019).

Other works used $\kappa_{\gamma,\text{eff}} = \langle \kappa_{\gamma,E} \rangle$:

Barnes et al 2016 - $0.1 \text{cm}^2 \text{gr}^{-1}$ for low- Y_e (used by Rosswog et al 2017, Bulla 2023), Hotokezaka & Nakar 2020 - $0.4 \text{cm}^2 \text{gr}^{-1}$ for strong R-process, $0.07 \text{cm}^2 \text{gr}^{-1}$ for weak. Barnes et al 2021 saw $\langle \kappa_{\gamma,E} \rangle$ up to $\sim 3 \text{cm}^2 \text{gr}^{-1}$ in low- Y_e .

A model for γ -ray deposition in a radioactive expanding ejecta

Our aim: calculate the γ -ray energy deposition fraction $f_{\gamma}(t) = \dot{Q}_{\gamma, \text{ dep}} / \dot{Q}_{\gamma}$, with good accuracy at least until $\dot{Q}_{\gamma, \text{ dep}} \approx \dot{Q}_{\text{charged, dep}} (\approx \dot{Q}_{\text{charged}})$.

 $\left\{egin{array}{ll} f_\gamma pprox 1 & {
m early times} \ f_\gamma \propto t^{-2} & {
m late times} \end{array}
ight.$

The semi-analytic method

(i) We use a semi-analytic method to find $f_{\gamma}(t)$.

(ii) We approximate f_{γ} using an analytic approximation $f_{\gamma, {\rm eff}}$ by:

- (a) Finding the shape of f_{γ} for a single γ -ray line,
- (b) "Stretching" the shape function according to $t_{\gamma,{
 m eff}}$ which is the time of "knee" $f_\gamma pprox 1-e^{-1}$,

This give $\kappa_{\gamma,\text{eff}}$, as $t_{\gamma,\text{eff}} = \sqrt{\kappa_{\gamma,\text{eff}} \langle \Sigma \rangle t^2}$.

la SNe as a test case

(i) The semi-analytic method agrees with Monte-Carlo simulation to $\leq 10\%$ error.

Comparison to URILIGHT MC code

8/15

The application for Kilonovae

Spherical, $v \sim 0.2c$ ejecta models (Kasen & Barnes 2013, Waxman et al 2017, uniform density) The semi-analytic method agrees with Monte-Carlo simulation to $\sim 10\%$ error near the "knee".

 \rightarrow ${\lesssim}10\%$ error in the total (7-rays + charged particles) energy deposition rate.

The $\kappa_{\gamma,\text{eff}}$ of Kilonovae

We develop an analytic approximation, using the semi-analytic method, by:

(i) Setting
$$f_{\gamma, ext{eff}}(t)=rac{1}{1+(t/t_{\gamma, ext{eff}})^2}$$
 , (motivated by Sharon & Kushnir 2020)

(ii) Finding
$$t_{\gamma,\text{eff}}$$
 (and $\kappa_{\gamma,\text{eff}}$).

 $\kappa_{\gamma,\text{eff}}$ changes only by a factor ~ 2 between low and high- Y_e conditions, as in any case most of the energy is carried by $\sim 1 \text{MeV} \gamma$ -rays.

Why $\kappa_{\gamma,\text{eff}}$ was overestimated in the past?

The mean opacity $\langle \kappa_{\gamma,E} \rangle$ overestimates the true $\kappa_{\gamma,\text{eff}}$:

It is the correct opacity only when the ejecta is transparent for **all** γ -rays: $f_{\gamma} \approx \langle \kappa_{\gamma,E} \rangle \langle \Sigma \rangle$. At times near the "knee", due to PE at low energies, there are still γ -rays with $\kappa_{\gamma,E} \langle \Sigma \rangle \gg 1$.

γ -ray deposition functions

 $f_{\gamma,\text{eff}}(t)$ is a good approximation to f_{γ} , at least until $\dot{Q}_{\gamma,\text{ dep}} \approx \dot{Q}_{\text{charged, dep}}$:

Nuclear physics uncertainties

We find $\kappa_{\gamma,{
m eff}}$ to be robust to nuclear physics uncertainties (typically $\lesssim 10\%$):

By modifying theoretical nuclear reactions rates by a random factor of $C \in [10^{-2}, 10^2]$, and changing the nuclear mass model: FRDM (blue), UNEDF1 (orange).

A Y_e -independent analytic approximation

As the Y_e -dependence is weak, a simple approximation can be applied to all Y_e 's:

$$\kappa_{\gamma,\text{eff}} \approx 0.034 \text{cm}^2 \,\text{gr}^{-1}, \quad t_{\gamma,\text{eff}} \approx 1 \text{day} \, f_{\Sigma}^{\frac{1}{2}} \left(\frac{M}{0.05 M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{v}{0.2c}\right)^{-1}, \quad f_{\gamma,\text{eff}}(t) = \frac{1}{1 + (t/t_{\gamma,\text{eff}})^2},$$

where f_{Σ} is a factor of order unity.

This gives the total energy deposition rate (γ -rays + charged particles) with $\lesssim 20\%$ error for $v \sim 0.2c$ ejecta

Key Takeaways

- The semi-analytic method can replace expensive MC simulations for a general ejecta.
- For spherical KNe of uniform composition: $\kappa_{\gamma,\text{eff}} \approx 0.034 \text{cm}^2 \text{ gr}^{-1}$, $t_{\gamma,\text{eff}} \approx 1 \text{day} \left(\frac{M}{0.05M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{v}{0.2c}\right)^{-1}$, $f_{\gamma,\text{eff}}(t) = \frac{1}{1 + (t/t_{\gamma,\text{eff}})^2}$, gives the total energy deposition rate with $\leq 20\%$ error.
- $\kappa_{\gamma,\text{eff}} \approx 0.03(0.05) \text{ cm}^2 \text{ gr}^{-1}$ for $Y_e \gtrsim (\leq)0.25$ and insensitive to large uncertainties in the nuclear physics model, as the γ -ray spectrum in KNe is dominated by ~ 1 MeV photons.
- κ_{γ,eff} was overestimated in the past (0.07 to 3cm² gr⁻¹), as ⟨κ_γ(E)⟩ is not the appropriate definition for it.
- $t_{\gamma,\text{eff}}$ is nearly insensitive to Y_e and s_0 , it depends mostly on the column density: (probably) not a probe of the r-process, but a potential probe of M/v^2 .