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Introduction

® UVOIR observations of Kilonovae will be key for constraining the properties of matter
ejected from NSMs.

® To this end, robust light curve modeling is essential.
A key component is the energy deposition process of radioactive decay products
(mainly 7, e7) which powers the transient.

® In la SNe ty (hereafter t, o), the time at which 7-ray energy start to escape deposition,
is an observable feature and a useful probe of the ejecta.

2/15



In this work we focus on the «y-ray heating in KNe, and:

® Find t, . for a wide range of ejecta properties (Ye, so and M, v)
and test its sensitivity to nuclear physics uncertainties.

® Give a semi-analytic method for calculating the ~-ray heating for any density profile p(v).

® Present a simple analytic approximation method, and apply it for spherical KNe.

Our method assume uniform composition, but can be extended to non-uniform composition.

Modeling of the e® heating - in Ben Shenhar's talk tomorrow.
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~v-ray thermalization in a nutshell

~-rays lose energy by:
® Photo-electric effect (PE): low energies (<few 100keV) and high Z.
e Compton scattering: intermediate energies (~1MeV), roughly Z-independent (o< %)
® Pair-production (PP): high energies (> few MeV) and high Z.
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~-ray thermalization in la SNe

® In la SNe, the Z of the ejecta is relatively low (Z < 30):

PE is weak, Compton scattering is dominant over a wide energy range around 1MeV.

® The ~-rays from %°Ni and 5°Co "see” energy deposition opacity due to Compton:

Ky off & (K E) ~ 0.025cm? gr—1 (Swartz et al 1995, Jeffery 1999)

® For an ejecta with column density (¥) ~ -5,
t, eff = 1/ Firy.eff (X)t2 — probes the column density of the ejecta (~ M/v?).
——

constant
(e.g. Wygoda et al 2019)
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~v-ray thermalization in KNe

In KNe, depending on initial conditions (mainly Y.), Z of the ejecta changes & reaches ~70.
PE dominates and increases the opacity at < 1MeV.

Also, heavier elements tend to emit softer ~y-rays.
(Hotokezaka & Nakar 2020)

— PE may cause k¢ to be larger and Y.-dependent - a potential probe of the R-process?

Some past works took £ eff & 0.025cm? gr—for all Ye as in la SNe
(Hotokezaka et al 2016, Kasen & Barnes 2019).

Other works used K eff = (K~,E):
Barnes et al 2016 - 0.1cm? gr—! for low- Y, (used by Rosswog et al 2017, Bulla 2023),
Hotokezaka & Nakar 2020 - 0.4cm? gr—*for strong R-process, 0.07cm? gr=! for weak.

Barnes et al 2021 saw (k. g) up to ~3cm?gr~tin low-Ye.
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A model for v-ray deposition in a radioactive expanding ejecta

Our aim: calculate the ~-ray energy deposition fraction £, (t) = Q% dep/QV,
with good accuracy at least until Qy, dep ~ Qcharged, dep(~ Qcharged)-

{f7 ~1 early times

The semi-analytic method
fy o t=2 late times

(i) We use a semi-analytic method to find £,(t).
(i) We approximate £, using an analytic approximation f, ¢ by:
(a) Finding the shape of £, for a single y-ray line,
(b) "Stretching” the shape function according to t, ef
which is the time of "knee" f, ~ 1 — e !

This give Koy effy AS by eff = H%eff<z> t2.
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la SNe as a test case

(i) The semi-analytic method agrees with Monte-Carlo simulation to <10% error.

(i) We reproduce K eff = 0.025cm? gr—1.
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The application for Kilonovae

Spherical, v ~ 0.2c ejecta models (Kasen & Barnes 2013, Waxman et al 2017, uniform density)
The semi-analytic method agrees with Monte-Carlo simulation to ~10% error near the "knee”.

— <10% error in the total (y-rays + charged particles) energy deposition rate.
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The k. o of Kilonovae

We develop an analytic approximation, 11 1 T T T 1 ”
using the semi-analytic method, by: r 1"
0055 {65
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Y.
The Y.-dependence of k. eff

K~.eff Changes only by a factor ~2 between low and high-Y, conditions, as in any case most of
the energy is carried by ~1MeV ~-rays.

10/15



Why k. o was overestimated in the past?

The mean opacity (k.,£) overestimates the true k. ff:
It is the correct opacity only when the ejecta is transparent for all y-rays: £, = (k) (X).

At times near the "knee”, due to PE at low energies, there are still y-rays with £, g(¥X) > 1
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~v-ray deposition functions

f,eff(t) is a good approximation to f,, at least until Q,y, dep A Qcha,gedv dep:
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Nuclear physics uncertainties

We find k. eff to be robust to nuclear physics uncertainties (typically < 10%):

By modifying theoretical nuclear reactions rates by a random factor of C € [1072,10?],
and changing the nuclear mass model: FRDM (blue), UNEDF1 (orange).
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A Y.-independent analytic approximation

As the Ye-dependence is weak, a simple approximation can be applied to all Ye's:

1
LM \B, v\l 1
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where fy is a factor of order unity. 1

This gives the total energy deposition rate 12}
(y-rays + charged particles) with < 20% error
for v ~ 0.2c ejecta
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Key Takeaways

The semi-analytic method can replace expensive MC simulations for a general ejecta.

For spherical KNe of uniform composition:

1
~ 2 o1 ~ M 2 -1 _ 1
Koy eff = 0.034cm = gr™=, ty e ~ lday (m) (oze) > Fren(t) = /e
gives the total energy deposition rate with < 20% error.

Ky eff 2 0.03(0.05) cm? gr—for Y, > (<)0.25 and insensitive to large uncertainties in the
nuclear physics model, as the «-ray spectrum in KNe is dominated by ~1 MeV photons.

K. eff Was overestimated in the past (0.07 to 3cm? gr™1), as (k. (E)) is not the appropiate
definition for it.

t, eff is nearly insensitive to Y. and sp, it depends mostly on the column density:

(probably) not a probe of the r-process, but a potential probe of M/v?.
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