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Introduction

• UVOIR observations of Kilonovae will be key for constraining the properties of matter
ejected from NSMs.

• To this end, robust light curve modeling is essential.
A key component is the energy deposition process of radioactive decay products
(mainly γ, e−) which powers the transient.

• In Ia SNe t0 (hereafter tγ,eff), the time at which γ-ray energy start to escape deposition,
is an observable feature and a useful probe of the ejecta.
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Our work

In this work we focus on the γ-ray heating in KNe, and:

• Find tγ,eff for a wide range of ejecta properties (Ye , s0 and M, v)
and test its sensitivity to nuclear physics uncertainties.

• Give a semi-analytic method for calculating the γ-ray heating for any density profile ρ(v).

• Present a simple analytic approximation method, and apply it for spherical KNe.

Our method assume uniform composition, but can be extended to non-uniform composition.

Modeling of the e± heating - in Ben Shenhar’s talk tomorrow.
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γ-ray thermalization in a nutshell

γ-rays lose energy by:
• Photo-electric effect (PE): low energies (<few 100keV) and high Z .
• Compton scattering: intermediate energies (∼1MeV), roughly Z -independent (∝ Z

A ).
• Pair-production (PP): high energies (> few MeV) and high Z .
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γ-ray thermalization in Ia SNe

• In Ia SNe, the Z of the ejecta is relatively low (Z <∼ 30):

PE is weak, Compton scattering is dominant over a wide energy range around 1MeV.

• The γ-rays from 56Ni and 56Co ”see” energy deposition opacity due to Compton:

κγ,eff ≈ ⟨κγ,E ⟩ ≈ 0.025cm2 gr−1 (Swartz et al 1995, Jeffery 1999)

• For an ejecta with column density ⟨Σ⟩ ∼ M
4πv2t2

,

tγ,eff =
√
κγ,eff ⟨Σ⟩t2︸ ︷︷ ︸

constant

→ probes the column density of the ejecta (∼ M/v2).

(e.g. Wygoda et al 2019)
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γ-ray thermalization in KNe

In KNe, depending on initial conditions (mainly Ye), Z of the ejecta changes & reaches ∼70.

PE dominates and increases the opacity at <∼ 1MeV.

Also, heavier elements tend to emit softer γ-rays.
(Hotokezaka & Nakar 2020)

→ PE may cause κγ,eff to be larger and Ye-dependent - a potential probe of the R-process?

Some past works took κγ,eff ≈ 0.025cm2 gr−1for all Ye as in Ia SNe
(Hotokezaka et al 2016, Kasen & Barnes 2019).

Other works used κγ,eff = ⟨κγ,E ⟩:
Barnes et al 2016 - 0.1cm2 gr−1 for low-Ye (used by Rosswog et al 2017, Bulla 2023),

Hotokezaka & Nakar 2020 - 0.4cm2 gr−1for strong R-process, 0.07cm2 gr−1 for weak.

Barnes et al 2021 saw ⟨κγ,E ⟩ up to ∼3cm2 gr−1in low-Ye .
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A model for γ-ray deposition in a radioactive expanding ejecta

Our aim: calculate the γ-ray energy deposition fraction fγ(t) = Q̇γ, dep/Q̇γ ,

with good accuracy at least until Q̇γ, dep ≈ Q̇charged, dep(≈ Q̇charged).{
fγ ≈ 1 early times

fγ ∝ t−2 late times

(i) We use a semi-analytic method to find fγ(t).

(ii) We approximate fγ using an analytic approximation fγ,eff by:

(a) Finding the shape of fγ for a single γ-ray line,

(b) ”Stretching” the shape function according to tγ,eff
which is the time of ”knee” fγ ≈ 1− e−1,

This give κγ,eff, as tγ,eff =
√

κγ,eff⟨Σ⟩t2.

The semi-analytic method

∫
dE

∫
d3r

∫
dΩ̂
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Ia SNe as a test case

(i) The semi-analytic method agrees with Monte-Carlo simulation to ≲10% error.

(ii) We reproduce κγ,eff ≈ 0.025cm2 gr−1.
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The application for Kilonovae

Spherical, v ∼ 0.2c ejecta models (Kasen & Barnes 2013, Waxman et al 2017, uniform density)
The semi-analytic method agrees with Monte-Carlo simulation to ∼10% error near the ”knee”.

→ ≲10% error in the total (γ-rays + charged particles) energy deposition rate.
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The κγ,eff of Kilonovae

We develop an analytic approximation,
using the semi-analytic method, by:

(i) Setting fγ,eff(t) =
1

1+(t/tγ,eff)2
,

(motivated by Sharon & Kushnir 2020)

(ii) Finding tγ,eff (and κγ,eff).
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Why κγ,eff was overestimated in the past?

The mean opacity ⟨κγ,E ⟩ overestimates the true κγ,eff:
It is the correct opacity only when the ejecta is transparent for all γ-rays: fγ ≈ ⟨κγ,E ⟩⟨Σ⟩.
At times near the ”knee”, due to PE at low energies, there are still γ-rays with κγ,E ⟨Σ⟩ ≫ 1.
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γ-ray deposition functions

fγ,eff(t) is a good approximation to fγ , at least until Q̇γ, dep ≈ Q̇charged, dep:
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Nuclear physics uncertainties

We find κγ,eff to be robust to nuclear physics uncertainties (typically ≲ 10%):

By modifying theoretical nuclear reactions rates by a random factor of C ∈ [10−2, 102],
and changing the nuclear mass model: FRDM (blue), UNEDF1 (orange).
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A Ye-independent analytic approximation

As the Ye-dependence is weak, a simple approximation can be applied to all Ye ’s:

κγ,eff ≈ 0.034cm2 gr−1, tγ,eff ≈ 1day f
1
2
Σ

(
M

0.05M⊙

) 1
2 ( v

0.2c

)−1
, fγ,eff(t) =

1

1 + (t/tγ,eff)2
,

where fΣ is a factor of order unity.

This gives the total energy deposition rate
(γ-rays + charged particles) with ≲ 20% error
for v ∼ 0.2c ejecta
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Key Takeaways

• The semi-analytic method can replace expensive MC simulations for a general ejecta.

• For spherical KNe of uniform composition:

κγ,eff ≈ 0.034cm2 gr−1, tγ,eff ≈ 1day
(

M
0.05M⊙

) 1
2 ( v

0.2c

)−1
, fγ,eff(t) =

1
1+(t/tγ,eff)2

,

gives the total energy deposition rate with ≲ 20% error.

• κγ,eff ≈ 0.03(0.05) cm2 gr−1for Ye ≳ (≲)0.25 and insensitive to large uncertainties in the
nuclear physics model, as the γ-ray spectrum in KNe is dominated by ∼1 MeV photons.

• κγ,eff was overestimated in the past (0.07 to 3cm2 gr−1), as ⟨κγ(E )⟩ is not the appropiate
definition for it.

• tγ,eff is nearly insensitive to Ye and s0, it depends mostly on the column density:
(probably) not a probe of the r-process, but a potential probe of M/v2.
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