Multi-component Ejecta and Time-Evolving Elemental Abundances in the GW170817 Kilonova with SPARK

Nick Vieira nicholas.vieira@mail.mcgill.ca

PhD candidate, Trottier Space Institute at McGill University, Montréal (with J. Ruan and D. Haggard)

6 September 2023 | Stockholm, Sweden

I'll be focusing on results from this paper (SPARK II):

[Submitted on 31 Aug 2023]

Spectroscopic r-Process Abundance Retrieval for Kilonovae II: Lanthanides in the Inferred Abundance Patterns of Multi-Component Ejecta from the GW170817 Kilonova

Nicholas Vieira, John J. Ruan, Daryl Haggard, Nicole M. Ford, Maria R. Drout, Rodrigo Fernández

But also see SPARK I:

Spectroscopic r-Process Abundance Retrieval for Kilonovae I: The Inferred Abundance Pattern of Early Emission from GW170817

Nicholas Vieira, John J. Ruan, Daryl Haggard, Nicole Ford, Maria R. Drout, Rodrigo Fernández, N. R. Badnell

Villar+17

Data: Pian+17, Sma<u>rtt+17</u>

GW170817's kilonova is clearly powered by decay of r-process elements. But we don't know precisely how much of each element was produced...

Data: Pian+17, Smartt+17

Villar+17

Bayesian inference, with uncertainties

20000

1.4 days

2.4 davs

3.4 days

4.4 days

5.4 days

Ambitions

Does the inferred abundance pattern evolve with time?

I'll focus on the spectra from 1.4, 2.4, and 3.4 days post-merger (optically thick, LTE)

Do we need multi-component ejecta models to fit any of these epochs?

Ascenzi+21

SPARK: Spectroscopic r-Process Abundance Retrieval for Kilonovae

Idea: Generate many synthetic spectra and compare them to observations \rightarrow Fit for the *r*-process elemental abundance pattern of GW170817 ("*spectral retrieval"*)

Problems:

- 1. many elements \rightarrow high dimensionality if we naively fit for each abundance individually
- 2. simulations are computationally expensive

Inference regimes

dimensionality of parameter space

computationally expensive simulation

SPARK: Spectroscopic r-Process Abundance Retrieval for Kilonovae

Idea: Generate many synthetic spectra and compare them to observations \rightarrow Fit for the *r*-process elemental abundance pattern of GW170817 ("*spectral retrieval"*)

Problems:

- 1. many elements \rightarrow high dimensionality if we naively fit for each abundance individually parametrize abundances
- 2. simulations are computationally expensive

Parametrizing the abundances

- Parametrize using electron fraction, expansion velocity, and entropy $Y_{\rm e}, v_{\rm exp}, \ S$
- Constrain fundamental conditions of the *r*-process + physical ejection mechanisms

Vieira+23a (SPARK I) Reaction network: Wanajo 18

11

Parametrizing the abundances

- Parametrize using electron fraction, expansion velocity, and entropy $Y_{\rm e}, v_{\rm exp}, s$
- Constrain
 fundamental
 conditions of the
 r-process

Vieira+23a (SPARK I) Reaction network: Wanajo 18

Inference regimes

dimensionality of parameter space

computationally expensive simulation

Radiative transfer with TARDIS

- 1D, spherically symmetric Monte Carlo
- Stratified medium under homologous expansion
- Synthetic spectrum at a single point in time
- (Expansion) opacities computed on the fly given composition of the ejecta → computationally expensive

SPARK: Spectroscopic r-Process Abundance Retrieval for Kilonovae

Idea: Generate many synthetic spectra and compare them to observations \rightarrow Fit for the *r*-process elemental abundance pattern of GW170817 ("*spectral retrieval"*)

Problems:

- 1. many elements \rightarrow high dimensionality if we naively fit for each abundance individually parametrize abundances
- 2. simulations are computationally expensive active learning

Active learning

- Approximate the posterior p(heta|X) with a Gaussian Process
 - Advantage: GPs have both a mean and a variance
 - **Bayesian Active Posterior Estimation (BAPE)**: Select points in parameter space which optimize both high posterior probability and large uncertainty in the posterior
 - Dramatically reduce the number of forward model evaluations needed for inference

https://distill.pub/2019/visual-exploration-gaussian-processes/

explore

Let's fit the 1.4, 2.4, and 3.4 day optical spectra of the GW170817 kilonova with both single- and multi-component models, and see what fits best.

Favoured models

Abundances

Vieira+23b (SPARK II) arXiv: <u>2308.16796</u> Solar *r*-process: Lodders 09 & Bisterzo+14

1.4 days, single-component

2.4 days, single-component

3.4 days, <u>multi</u>-component

presence of red is negligible

Compare components' abundances @ 3.4 days

Vieira+23b (SPARK II) arXiv: 2308.16796 Solar *r*-process: Lodders 09 & Bisterzo+14

Compare components' abundances @ 3.4 days

Vieira+23b (SPARK II) arXiv: 2308.16796 Solar *r*-process: Lodders 09 & Bisterzo+14

Compare components' abundances @ 3.4 days

Vieira+23b (SPARK II) arXiv: <u>2308.16796</u> Solar *r*-process: Lodders 09 & Bisterzo+14

genuinely multi-component!

1.4 days 2.4 days 3.4 days $Y_{\rm e,1} = 0.228^{+0.073}_{-0.088}$ $v_{\rm exp,1}/c = 0.198^{+0.092}_{-0.102}$ $s_1 = 14.9^{+8.0}_{-4.5}$ $Y_{\rm e,2} = 0.161^{+0.149}_{-0.104}$ $v_{\rm exp,2}/c = 0.134^{+0.091}_{-0.069}$ $s_2 = 21.5^{+8.3}_{-9.5}$ effectively $\checkmark v/c$ single-component 0.3440.213presence of red is negligible complete overlap; similar ~complete overlap; compositions different compositions

Leave-one-out for favoured models

single-component

single-component

<u>multi</u>-component

Spectral DECompositions @ 3.4 days, multi-component

Sr II remains important Y II, Zr II are swamped out by a new <u>ensemble of</u> <u>lanthanides:</u> Ce II, Nd II, Sm II, Eu II

Ce II contributes 27.5% of absorption (compare to 30.3% from Sr II)

Conclusions & looking forward

- Same single blue component describes 1.4, 2.4 days **3.4 days is better described by** multi-component
- New redder, lanthanide-bearing component at 3.4 days
- Physical origins of the ejecta?
 - Blue at 1.4, 2.4: consistent with neutrino-reprocessed accretion disk wind
 - Red at 3.4: consistent with neutron-rich accretion disk wind and/or dynamical ejecta
- What happens at 4.4 days and beyond?
- What are the abundances of the next kilonova?

