

Observations of kilonovae

Andrew Levan Stockholm, 7 September 2023

Observations of kilonovae are hard

Observations of kilonovae need to know where to look

Observations of kilonova are unlikely to be much better soon

Number of photometric points: ~750 Number of spectra:~50

Observations of kilonovae in GRBs require potentially complex decomposition

Lamb et al. 2019, Troja et al. 2019

Also Nikhil Sarin talk Radboud Universiteit

Observations of kilonova can still deliver new science, even if they aren't as good as AT2017gfo

+ Kilonovae should have diversity depending on component masses, viewing angles etc

Diversity in short GRB kilonovae Gompertz et al. 2018

> Lack of arcsecond positions Of faint bursts only GRB 080905A has an optical afterglow Uncertainty in host association/redshift

Rastinejad, et al. 2022, Troja et al. 2022, Yang et al. 2022, Gompertz et al. 2023

Rastinejad,et al. 2022, Troja et al. 2022, Yang et al. 2022, Gompertz et al. 2023

Rastinejad,et al. 2022, Troja et al. 2022, Yang et al. 2022, Gompertz et al. 2023

Timeline:

+8 hours First IPN (2 sq. degrees)

+20 hours Swift tiling begins

+29 hours improved IPN (30 sq. arcmin)

+31 hours Swift reports, 1 faint source, plausible afterglow but not clear if it is new and/or transient

+33 hours

ULTRACAM – new source vs legacy survey, confirm optical afterglow.

Levan et al. 2023, see also Gillanders et al. 2023

Levan et al. 2023, see also Gillanders et al. 2023

Gillanders et al. 2023

Other "long GRBs" from mergers – GRB 191019A, dynamical?

Levan et al. 2023

Other "long GRBs" from mergers – GRB 191019A, dynamical?

Levan, et al. 2023

Other "long GRBs" from mergers – GRB 191019A, dynamical?

Lazzati et al. 2023

The sample of long GRBs from mergers

- At z<0.3 there are 24 bursts detected by Swift
 - 5 are short (T90 < 2s)
 - 19 are long (T90 > 2s)
 - 7 are long but with no supernova emission or in ancient galaxies (050219A, 050724, <u>060505</u>, <u>060614</u>, 111005A, 191019A, <u>211211A</u>).
 - Selection effects (mostly faint afterglows) mean merger GRBs more likely to be missed than collapsar GRBs.
- Long GRBs from mergers may be as common as short GRBs (for Swift).
- JWST can do KN spectroscopy (at peak) out to z~0.3 → likely 1 opportunity per 18 months.
- JWST can do KN imaging to z=1 → many opportunities per year (but which bursts....)

Long lived central engines are common

Long lived central engines are common

Outliers

But beware false dichotomies

It's a long GRB without a supernova \rightarrow it must be a merger

GRB 111005A Suggested as merger by e.g. Michalowski et al., very nearby (55 Mpc), $E_{iso} = 2 \times 10^{47}$ erg.

Off-axis long version of GRB 170817A, or something different

If this is a merger then $M_K > -12$, or $A_V > 60$ for AT2017gfo-like event

Rates

- Rates are also extremely challenging, V_{max} rates dominated by local, low luminosity examples (e.g. high-L R_{211211A} = 0.01 Gpc⁻³ yr⁻¹, low-L R_{111005A} = 1000 Gpc³ yr⁻¹)
- Lower limit. Swift has seen 12 mergers to z<0.3 in 18 years, 1/6th sky, 80% duty cycle.
- There have been > $f_b f_{GRB(L)}$. 3 Gpc⁻³ yr⁻¹ mergers*
 - f_b beaming fraction ~ 20 for SGRBs
 - $f_{GRB(L)}$ faint end of luminosity function ~10-100.....
- Rates consistent with LVK BNS merger rates

Radboud Universiteit

MSc project: Kruthi Krishna

Levan et al. 2023

What about collapsars?

GRB 221009A – brightest ever long GRB

Blanchard et al. 2023

* Biological categorization taken from Remick KA and Helman JD. (2023) The elements of life: a biocentric tour of the periodic table. Adv. Microbial Phys.

Conclusions

- Observations of kilonovae are hard for many reasons, but there are routes to improvements
 - Future GW still likely to give the best lightcurves and spectra (distances <300 Mpc) and no afterglow contamination. But they are rare.
 - Still no wide-field survey discoveries, but things may improve (see Stephen Smartt talk).
- GRBs currently seem the most promising route to expand the KN sample.
 - Short and long GRBs may contribute to the merger rate at similar levels
 - Rate of such events with LVK volume (for face-on mergers) is ~1/yr GRB 211211A/230307 should have been seen
 - But GRBs require afterglow subtractions and so not good for early KN properties
- If our goal is to understand the r-process in mergers, then GRBs likely to provide more opportunities than GW in the next few years.

Conclusions

- Open questions:
 - What new observations will really solve open problems (robust to model uncertainties)?
 - Can we separate what we can learn from small samples with good data and larger sparsely sampled data?
 - How can we (pre-)select objects that will contain kilonovae?
 - Do we need GW to determine if long GRBs with kilonovae are BNS, BH-NS or even WD-NS?