Difficulties in Modeling Kilonova Transients

adding complexity/reality? to our simple stories
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Inferring the r-Process Yield

Cote et al. 2018

Table 1
e |nthe ﬂurry of results - hEstimatels of Ejecteccli Ma(sises for High-opaci;y S ;
. Lanthanide-rich Material (m4,,) and Medium-opacity “Winds” (m,,), Source
studying GW170817, from the( Rdeycgnt Literature for GW 170817 )
arange of €l ecta Reference Mayn [Mo] my, [Mg)]
masses were
. Abbott et al. (2017a) 0.001-0.01
predicted. Arcavi et al. (2017) .. 0.02-0.025
« Some of the Cowperthwaite et al. (2017) 0.04 0.01
dlfferences are due Chornock et al. (2017) 0.035 0.02
. Evans et al. (2017) 0.002-0.03 0.03-0.1
to using only a Kasen et al. (2017) 0.04 0.025
fraction of the data, Kasliwal et al. (2017b) >0.02 >0.03
but mode”ng Nicholl et al. (2017) 0.03
o Perego et al. (2017) 0.005-0.01 107> — 0.024
uncertainties are a Rosswog et al. (2017) 0.01 0.03
prominent aspect of Smartt et al. (2017) 0.03-0.05 0.018
the uncertainties. Tanaka et al. (2017) 0.01 0.03
Tanvir et al. (2017) 0.002-0.01 0.015
Troja et al. (2017) 0.001-0.01 0.015-0.03
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Light Curve Basics

* Forward shock moves Forward
through circumstellar Shock
medium (for massive star
progenitors, this is a clumpy  Photo-
stellar wind). sphere

* Photosphere moves inward
in mass (typically still
outward in radius): ryp.
evolves with Mg, (V)2

* Energy from radioactive
decay or an on-going central
engine (e.g. magnetar,
fallback) is transported out
of the center.

Central
Source

Radioactive
Decay
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Arnett Law

« Arnett (1982) derived the luminosity of a transient powered by a central %°Ni
source. This led to a shape function that depended on the diffusion time, the

expansion time (inward motion of the photosphere), and the nickel decay
timescale:

1 1
y = Q1amh)2 /218 ~ (f‘?tMej/ Vec )2
L = exiMniMoA(x, y)

= 2.055 x 10°LMy;A(x, y)

« This derivation is remarkably good at matching la and many lb/c light-curves.

» It also explains many of the trends/degeneracies (opacity, ejecta mass and
expansion velocity).

« But just because it fits the light curve doesn’t mean you can trust the masses
inferred from simple approaches like this (e.g. see M. Hamuy thesis)
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Different picture from Kilonovae

» Shock heating: jet Forward
interacting with wind (e.g. Shock
Shrestha et al. 2023) but
reverse shock likely to be Photo-
weak sphere

» Radioactive isotopes much
more distributed.

» Mass is low, velocity is high
— fast LC evolution.

. Central
» Long-term central engine:  Source

magnetar, fallback

accretion . .
Radioactive

Decay
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Uncertainties in Modeling Kilonova Light-Curves

* Initial Conditions: velocity distribution: m(v,0,t), v(m,0,t); composition,
entropy, additional power sources (magnetar, fallback), surrounding
medium

* Transport:
»Energy Deposition: nuclear decay properties, vy, e, a transport.

»>transport methods: flux limited diffusion, other closure methods that
include angular effects, methods that include full angular information:
e.g. discrete ordinate (e.g. S,), Implicit Monte Carlo+discrete diffusion
Monte Carlo (e.g. SuperNu), ...

»atomic physics: in LTE, NLTE
»mplementation of the atomic physics: Sobolev, binning (expansion, ...)
»Interaction with matter: shocks, ...
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Counts

Ratio

For example, 230307A, a long duration GRB with a

kilonova?
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GRB230307A — many similarities to other kilonova

The light curve is very quickly evolving. After 30d, the photosphere begins to
move in dramatically (evidence of drop in opacity as discussed by Kasen?).
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If it looks like a duck, is it?

Kaltenborn et al. 2023

- How do we tell the difference between 7
. . oy n o
different ejecta. Is it in the IR because the 5
oy n g
photons are downgraded or because it is cool £
£
=
>
_18 T g2 "T1P1 - s2P1 -18 | P1s2 = Tes2 T1P1 S2P1 | =
ToP2 — T2P5 --- 5281 - - 5182 ToP2 — T2P5 - -- 5281 o
-~ TI81 - - T285 — S2Tt | | e TIS2 - - TIS1 - - T285 — S2T o
16 1 S-16 | {4 -
€ 1S5
2 2
5—14 4 5_14 t .
2 2
2 g
3—12 B 2_12 . i
e e
=2 2
g \ g
8101 my=0002Msun ) 8-10[  my=0.002 Msun ]
_g-band, top view ‘\\“’3_‘ “ K-band, top view
-8 /—g\ I I ' I ' [ -8, ! | I I ]
0125 025 05 1 2 4 8 16 0125 025 05 1 2 4 15[ T T —] &l . : —
time [d] time [d] FLASH
- ; : — - - — [T — - .
e TUSI$ T — ks sesl * TUSI$ T — by - sel -4} Zenatiet ] 14p
TIS2 - - TIS1 -- T285 —sS2™ | | - TIS2 - - TIS1 - - T285 — S2T
?—16 L il §—16 L B al. 2020
£ £ < -13¢+ & -13
2 Korobkin 3 5 E
g ] 14T 1 & =
2 et al. 2 & -12f g -12f
& & = g
12| 2021 12| 1 =
E 2 A1t A1}
o o
§-10 \ « £-10 mg = 0.002 Msun
__g-band, side vie \\ R\ K-band, side view -107 i 101
L VAN LR WL W - S ‘ ‘ ‘ ‘ W] Model D Model E
0125 025 05 1 2 4 8 16 0125 025 05 1 2 4 8 16 9 9 A
time [d] time [d] 0 20 40 60 0 20 40 60

Time [day] Time [day]



Matching to a o o s = g sopm
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Kilonova oo Gillanders et al. 2023
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But can we explain these with Ca+CO features from a WD/NS
merger?

The features
and high
opacities might
be a
combination of

Call, CO
molecular lines
and dust.

Gillanders et al. 2023
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Blue versus Red Components Too Simplistic

« While true that the neutrino-driven wind
dynamical ejecta has a h g
: ypermassive

lower electron fraction
from the disk wind, it neutron star

may be too simple to say

that one is a “red” vs. | ‘
“blue” component.

neutron-rich

aaP tidal ejecta

r-process

> Some of the disk ejecta main \57 A
can have low electron r-process P
fracti
ractions and produce vﬁ b

large amounts of
Lanthanides (e.g.
Ricigliano talk)

> Low electron fractions
do not preclude blue
emission.

accretion disk
outflow

black hole

accretion disk GRB jet Korobkin et al. 21
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Disk Ejecta Composition
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Different disks produce different electron fraction distributions
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The disk alone can produce 3'd peak r-process

- Disk 1 Disk 3 ¢ solar

Disk 2 == Disk 4
$%

[E—Y

O
s
I

The ratio of the
2nd and 3 peak

Rosswog) What
variations are
allowed by the
data?

—
N
N

1
elements should — O
-3 cC
not be robust. 8 10 %
(recall also talks % o]
by Martinez- O 10-5 Q

/ c .

Pinedo, = )
Q §

<

p—
3
\O

Il | | | 1 | 11l | L | |
0 50 100 150 200 250
Mass Number [-]

Los Alamos National Laboratory 9/23/23 | 15



It is harder to distinguish BH vs. NS from the composition

than we thought.

My=0.42M ¢ My=0.25M ¢

The disk 10°?
neutrino _10%]
luminosity £,
dominates gloso_

the E

neutrino T 107

flux. NS 10%
neutrinos 1053 Mg =0.1425Mo My =0.082M
will alter 107

the yields, ¢

but will this 2z
change be £
detectable? - 10

1048 S

102 103 10 102 103 104

t/MgH t/Mpy
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Low Y, doesn’t mean the emission has to all be red

Series of UV light curves 39.5 | | | | | | |
from spherical ejecta w o |— m M1E1M2
z : | — M1E2M2 M1E1M4
models. ol | wipama wieims |
- : M1E8M8
UV can be bright almost 0 o ﬁ ?
out to a day depending )
upon the ejecta mass. n
v 38.0
2
The composition of this £
. . —1 375},
material is from the o
electron fraction of - (¢
Y.=0.19 ejecta. TOr
Low Y, still produces B iz o o8 o6 04 02 00
some blue! Log Time (d)
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Observations are driven by Emission and Optical Depth

" 08 Corresponding wavelength- ol
- dependent optical depth as a
o function of velocity coordinate.
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coordinate of the ejecta for
neutron-rich ejecta (Ye=0.19)
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This is a 1-dimensional mode

10!

Combining these two gives an
idea of what we observe.
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Distribution matters

 Many models - 16 : all, 1000km
assume power-law 161 all, 1500km
] —3{ = |6|: all, 2000km
or Slmple models —— |6]: all, 3000km
for the distribution 4.
of matter versus R
velocity. < -5
* Disk models show Eg
that the velocity =7
distribution can be . From Miller et al. models
very different than a
simple power-law. ~8-
~40 -35 -30 -25 -20 -15 -10 -05
logio(vlc])
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NLTE - High ionization fractions to late times

In a 1-zone model, steady-state 1074
model, Hotokezaka et al. 2021 found
that decay electrons ionize the E 1o
material (a larger fraction would be 2
. . X
doubly ionized. 2 o]
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Conclusions

* The interpretation of kilonova observations requires understanding a
broad range of physics from the details of the ejecta properties to the
detailed atomic and plasma physics.

 Given the rarity of these events, understanding of this physics will rely
heavily on theoretical modeling of the ejecta properties, nuclear
physics, atomic physics, radiation transport and numerical methods.

* \We need to compare to other transients and determine what
observations can distinguish between the different phenomena and,
ultimately, constrain the ejecta properties to determine the r-process
production.

* The work presented at this meeting is critical to making these
advances.
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