Radiative transfer simulations for light curves and spectra of kilonovae

Masaomi Tanaka (Tohoku University)

in collaboration with Nanae Domoto (Tohoku U.), Daiji Kato (NIFS), Gediminas Gaigalas, Laima Radziute, Pevel Rynkun (Vilnius U.), Smaranika Banerjee (Stockholm U.), Kyohei Kawaguchi (AEI), Kenta Hotokezaka (U. Tokyo)

What can we learn from kilonova?

Light curves

Spectra

Figure from Kawaguchi+2018, 2020

Ejected mass and (rough) composition

Detailed composition

Figure from Domoto+2020,2022

Origin of r-process elements Physics of neutron star mergers

Role of kilonova radiative transfer

http://www.aei.mpg.de/comp-rel-astro

MT & Hotokezaka 13

(C) NAOJ

What is necessary ingredients (= atomic data)? What is necessary for future improvement?

Kilonova @ t ~ 1 day

M ~ 0.01 Msun v ~ 0.1 c R ~ 10¹⁴⁻¹⁵ cm

Optical + infrared photons

Gamma-rays β/α particles

Optical/infrared photons interact with heavy elements (mainly via bound-bound transitions)

 $\rho \sim 10^{-13} \text{ g cm}^{-3} (n_e \sim 10^9 \text{ cm}^{-3})$ T $\sim 5,000 \text{ K}$ (neutral to several ionization degrees)

see D. Kasen's talk

Radiative transfer simulations for light curves and spectra of kilonovae

Light curves

• Spectra

Two different demands on atomic data

C. Fontes, S. Banerjee, P. Palmeri, ...

"Minimum" atomic data for NS merger opacity (LTE)

see talks by D. Kasen, Q. Pognan, K. Hotokezaka, N. Badnell for non-LTE cases

Expansion opacity

Friend & Castor 1983 (stellar wind), Pinto & Eastman 1993 (supernova) Kasen+06, Kasen+13, MT & Hotokezaka 13 (kilonova)

$$\kappa_{\exp}(\lambda) = \frac{1}{ct\rho} \sum_{l} \frac{\lambda_{l}}{\Delta\lambda} (1 - e^{-\tau_{l}})$$

Sobolev optical depth (homologous expansion)

$$\begin{aligned} \tau_l &= \int \alpha dr \\ &= \frac{\pi e^2}{m_e c} n_{i,j} t \lambda_l f_l \frac{g_k}{g_0} e^{-\frac{E_k}{kT}}, \end{aligned}$$

No systematic, experimentally-evaluated data

Status of atomic calculations for kilonova

Bound-bound opacity

Kasen+13, MT & Hotokezaka 13, MT+18, 20, Fontes+20

MT, Kato, Gaigalas, et al. 2018

Energy level distribution

calculated with HULLAC code

All the data are available at http://dpc.nifs.ac.jp/DB/Opacity-Database/

Opacity (Planck mean)

All the data are available at http://dpc.nifs.ac.jp/DB/Opacity-Database/

Understanding the impact of accuracy in atomic calculations

see Gaigalas+19 for Nd (see also Floers+23)

Singly ionized lanthanides

GRASP (Radziute+20, 21) see P. Jonsson's talk HULLAC (Tanaka+20)

T = 5000 K

Largest difference in the most complex ions

Energy level distributions

HULLAC results tend to show upward energy level distribution (Main difference is in 4fⁿ 5d 6s configurations)

Kilonova in GRB230307A?

Levan+23, Gillanders+23

 $\kappa > ~ 5 \text{ cm}^2 \text{ g}^{-1}$ to keep the photosphere

High opacity at late time?

$$\tau_l = \frac{\pi e^2}{m_e c} n_{i,j} t \lambda_l f_l \frac{g_k}{g_0} e^{-\frac{E_k}{kT}}$$

$$\kappa_{\exp}(\lambda) = \frac{1}{ct\rho} \sum_{l} \frac{\lambda_l}{\Delta\lambda} (1 - e^{-\tau_l})$$

 $\kappa > 5 \text{ cm}^2 \text{ g}^{-1}$ at t = 30d is difficult with T ~ 800 K (under LTE)

High opacity at late time?

Non-LTE => T ~ 5,000 K? Optical photons can still be absorbed Radiative transfer simulations for light curves and spectra of kilonovae

• Light curves

Spectra

Two different demands on atomic data

see also talks by N. Domoto, A. Sneppen, N. Vieira, ...

Available atomic data

Data from the NIST ASD

Transitions with known wavelengths

Available atomic data

Data from the NIST ASD

Transitions with known transition probability

Accurate transition data are highly incomplete (in particular NIR)

Important elements for spectral features

see N. Domoto's talk

Constructed from complete data (MT+20)

$$\tau_l = \frac{\pi e^2}{m_e c} n_{i,j} t \lambda_l f_l \frac{g_k}{g_0} e^{-\frac{E_k}{kT}}$$

1 H																	² He
³ Li	⁴ Be											5 B	6 C	7 N	8 0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	40 Zr	41 Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 T	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	^{89~103} Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	111 Rg	¹¹² Cn	¹¹³ Uut	114 FI	¹¹⁵ Uup	116 Lv	¹¹⁷ Uus	¹¹⁸ Uuo
			⁵⁷ La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu
			⁸⁹ Ac	90 Th	⁹¹ Pa	92 U	93 Np	94 Pu	⁹⁵ Am	96 Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Elements with

- low-lying energy levels (higher population)
- relatively simple structure = small number of transitions
 - = high transition probability (sum rule)

Solar spectrum

https://en.wikipedia.org/wiki/Fraunhofer_lines

1 H																	² He
³ Li	⁴ Be											5 B	6 C	7 N	8 0	9 F	¹⁰ Ne
¹¹ Na	¹² Mg											13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	⁴¹ Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	⁴⁷ Ag	48 Cd	⁴⁹ In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	^{89~103} Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Uut	114 FI	¹¹⁵ Uup	116 Lv	¹¹⁷ Uus	¹¹⁸ Uuo
			⁵⁷ La	⁵⁸ Ce	59 Pr	60 Nd	⁶¹ Pm	62 Sm	⁶³ Eu	64 Gd	⁶⁵ Tb	66 Dy	⁶⁷ Но	68 Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
			⁸⁹ Ac	90 Th	⁹¹ Pa	92 U	⁹³ Np	94 Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Supernova spectrum (Type II)

1 H																	² He
³ Li	Be											5 B	Č	7 N	8 0	9 F	¹⁰ Ne
¹¹ Na	¹² Mg											13 A	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	²⁰ Ca	Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	38 Sr	39 Y	⁴⁰ Zr	Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	Pd	Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57~71 L a-Lu	⁷² Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	^{89~103} Ac-Lr	¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	112 Cn	¹¹³ Uut	114 Fl	¹¹⁵ Uup	116 Lv	¹¹⁷ Uus	118 Uuo
			⁵⁷ La	⁵⁸ Ce	59 Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	G4 Gd	⁶⁵ Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
			⁸⁹ Ac	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	⁹⁵ Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Mazzali+92 see also Dessart et al. 08, 11

Road to the line identification

"Candidate"

Wavelengths are consistent (w/ reasonable Doppler shift) => Need transition wavelengths

Strong lines are expected (in terms of abundances, ionization, excitation, ...) => Need transition probabilities

No other line can produce the feature => Need complete data for strong transitions

Line identification

Spectroscopic measurements for transition probabilities

Laser induced breakdown spectroscopy (R ~ 10,000 in optical)

see P. Dunne's and H. Hartman's talk

Measurements of Ce and La in optical

Naoi (including MT)+22

How to assure the completeness of the strong transitions?

Domoto et al. 2022: use theoretical data for the completeness

The best spectroscopic experiment...

- T ~ 5,000 K, ρ ~ 10^{-15} g cm^{-3.} (n ~ ρ /A m_p ~ 107 cm^{-3})
- Heavy elements dominated plasma

How about using "chemically peculiar stars"?

Similar lanthanide abundances

Tanaka, Domoto, Aoki et al. 2023

What about ionization states?

Ionization degrees are also similar * Excitation is higher in stellar atmosphere (higher T)

Tanaka, Domoto, Aoki et al. 2023

NIR spectrum of a chemically peculiar star

Tanaka, Domoto, Aoki et al. 2023

Subaru/IRD (R ~ 70,000)

Strongest lines = Ce III, Sr II

No other comparably strong lines = completeness

Chemically peculiar stars vs kilonovae

Tanaka, Domoto, Aoki et al. 2023

The most dominant feature around 14,500 A is Ce III (<= Domoto et al. 2022) Another broad feature at 13,000 A (La III) is in the gap of the atmospheric windows...

Anders: "what we have learned from 50yr of SN studies?"

Supernova spectra in 1970s

Kirshner+73

Summary: kilonova light curves and spectra

- Atomic data for light curves
 - Systematic atomic data for LTE are available
 - Need more evaluation of the accuracy (in progress)
- Atomic data for spectra
 - Accurate data for selected ions (w/ strong lines) are available
 - From "candidate" to "identification"
 - Need experimental transition probabilities (in progress)
 - Completeness for strong lines is also important (use of stellar spectrum is a possible way)