Palatini $F(R, X)$:
 a new framework for inflationary attractors

Antonio Racioppi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Stockholm, October 23rd, 2023
based on
arXiv:2307.02963
with C. Dioguardi (Taltech \& NICPB)

KBFI - Metric vs Palatini

The properties of spacetime are essentially described by:

- the affine connection: $\Gamma_{\alpha \beta}^{\lambda} \rightarrow$ parallel transport
- the metric tensor: $g_{\mu \nu} \rightarrow$ distance

The connection coefficients and metric tensor are fundamentally independent quantities. They exhibit no a priori known relationship. If they are to have any relationship, it must derive from

- additional constraints (metric formalism $\nabla_{\alpha} g_{\mu \nu}=0$)
- EoM for both 「 and g (Palatini formalism)

If Einsteinian gravity $(\sim R)$, EoM $\Rightarrow \nabla_{\alpha} g_{\mu \nu}=0$ (i.e Palatini \equiv metric)

With non-minimal theories, metric and Palatini formalism generate different physical theories. (Koivisto \& Kurki-Suonio: arXiv:0509422)

KBFI
 NICPB

- We start with the following action in the Palatini formulation

$$
\begin{aligned}
S_{J} & =\int \mathrm{d}^{4} \times \sqrt{-g_{J}}\left[\frac{1}{2} F(R(\Gamma))+\mathcal{L}(\phi)\right] \\
\mathcal{L}(\phi) & =-\frac{1}{2} g_{J}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)
\end{aligned}
$$

- we rewrite the $F(R)$ term using the auxiliary field ζ, obtaining

$$
S_{J}=\int \mathrm{d}^{4} x \sqrt{-g}_{J}\left[\frac{1}{2}\left(F(\zeta)+F^{\prime}(\zeta)(R(\Gamma)-\zeta)\right)+\mathcal{L}(\phi)\right]
$$

- we move to the Einstein frame: $g_{\mu \nu}^{E}=F^{\prime} g_{\mu \nu}^{J}$
N.B. now $\Gamma^{E}=\Gamma^{J}$

$$
\begin{aligned}
& S_{E}=\int \mathrm{d}^{4} x \sqrt{-g_{E}}\left[\frac{R}{2}-\frac{1}{2 F^{\prime}(\zeta)} g_{E}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-U(\chi, \zeta)\right] \\
& U(\chi, \zeta)=\frac{V(\phi(\chi))}{F^{\prime}(\zeta)^{2}}-\frac{F(\zeta)}{2 F^{\prime}(\zeta)^{2}}+\frac{\zeta}{2 F^{\prime}(\zeta)} \\
& \frac{\partial \chi}{\partial \phi}=\frac{1}{\sqrt{F^{\prime}(\zeta)}} \text { (canonically normalized scalar) }
\end{aligned}
$$

- no $-\frac{3}{2}\left(\frac{\partial F^{\prime}}{F^{\prime}}\right)^{2}$ like in metric gravity! ζ still auxiliary! still single field setup!

KBFI
 NICPB
 - EoM and problems

- The full EoM for ζ is
with

$$
\begin{gathered}
G(\zeta)=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi F^{\prime}(\zeta)+V(\phi) \\
G(\zeta)=\frac{1}{4}\left[2 F(\zeta)-\zeta F^{\prime}(\zeta)\right]
\end{gathered}
$$

- The standard procedure would be now to solve the EoM and determine $\zeta\left(\phi, \partial^{\mu} \phi \partial_{\mu} \phi\right)$ and insert it back into the action \rightarrow Problem!!!!
- Higher order scalar kinetic term because ζ depends also on $(\partial \phi)^{2}$
- manageable if $F \sim R^{2}$ (e.g. Enckell et al., 1810.05536)
- disastrous if $F \sim R^{n}$ and $n>2$ (A.R. et al., 2212.11869)
- solution $\rightarrow F(R-X), X=g_{J}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$

KBFI - Beyond $F(R): F(R, X)$

- We consider the following $F(R, X)$

$$
S=\int d^{4} x \sqrt{-g^{J}}\left(\frac{1}{2} F\left(R_{x}\right)-V(\phi)\right)
$$

where $R_{X}=R-X, X=g_{J}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ denotes the inflaton kinetic term

- again rewrite the action with the auxiliary field ζ :

$$
S=\int d^{4} x \sqrt{-g^{j}}\left(\frac{1}{2} F(\zeta)+\frac{1}{2} F^{\prime}(\zeta)\left(R-g_{J}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\zeta\right)-V(\phi)\right)
$$

N.B. the only difference is the F^{\prime} prefactor in front of $(\partial \phi)^{2}$

- the corresponding Einstein frame action:

$$
S=\int d^{4} x \sqrt{-g^{E}}\left(\frac{R}{2}-\frac{1}{2} g_{E}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-U(\zeta, \phi)\right)
$$

- ϕ already canonically normalized! \Rightarrow no disastrous dynamics
- U same as before!

The full EoN for ζ now is

$$
G(\zeta)=\frac{1}{4}\left[2 F(\zeta)-\zeta F^{\prime}(\zeta)\right]=V(\phi)
$$

- $V \rightarrow G$ in $U:$

$$
\begin{aligned}
U(\phi, \zeta) & =\frac{V(\phi)}{F^{\prime}(\zeta)^{2}}-\frac{F(\zeta)}{2 F^{\prime}(\zeta)^{2}}+\frac{\zeta}{2 F^{\prime}(\zeta)} \\
& =\frac{G(\zeta)}{F^{\prime}(\zeta)^{2}}-\frac{F(\zeta)}{2 F^{\prime}(\zeta)^{2}}+\frac{\zeta}{2 F^{\prime}(\zeta)} \\
& =\frac{F(\zeta)}{2 F^{\prime}(\zeta)^{2}}-\frac{\zeta}{4 F^{\prime}(\zeta)}-\frac{F(\zeta)}{2 F^{\prime}(\zeta)^{2}}+\frac{\zeta}{2 F^{\prime}(\zeta)} \\
& =\frac{1}{4} \frac{\zeta}{F^{\prime}(\zeta)}=U(\zeta) \quad \zeta=\zeta(\phi)
\end{aligned}
$$

- valid for any $F\left(R_{X}\right)$ and $V(\phi)$
- Now we focus on the class of quadratic F's

$$
\begin{aligned}
& F\left(R_{X}\right)=2 \Lambda+\omega R_{X}+0 \\
& \text { or } \zeta \rightarrow \Lambda+\frac{\omega}{4} \zeta=V(\phi)
\end{aligned}
$$

- Einstein frame potential: fractional attractors

$$
U(\phi)=\frac{\bar{V}(\phi)}{8 \alpha \bar{V}(\phi)+\omega^{2}}
$$

$$
\text { with } \bar{V}(\phi)=V(\phi)-\Lambda
$$

N.B. $U \sim$ Enckell et al., 1810.05536 but no $\frac{\partial \chi}{\partial \phi}$
\Rightarrow different predictions

KBFI • Quadratic $F\left(R_{x}\right)$ NICPB

- $F\left(R_{X}\right)=2 \Lambda+\omega R_{X}+\alpha R_{X}^{2}$

$$
U(\phi)=\frac{\bar{V}(\phi)}{8 \alpha \bar{V}(\phi)+\omega^{2}}
$$

$$
\text { with } \bar{V}(\phi)=V(\phi)-\Lambda
$$

- Requiring $U(\phi) \geq 0, F^{\prime}(\zeta)>0$ allows only:

$$
\begin{aligned}
& \text { 1. } \omega>0, \wedge \leq 0, V(\phi) \geq 0 \Rightarrow \bar{V}>0 \rightarrow \text { canonical } \rightarrow \mathrm{Q} \mathrm{\& A} \\
& \text { 2. } \omega<0, \wedge>0, V(\phi) \leq 0 \Rightarrow \bar{V}<0 \rightarrow \text { tailed }
\end{aligned}
$$

- In both cases $\alpha>\frac{\omega^{2}}{8 \Lambda}$ for $\Lambda \neq 0$

\& KBFI • Quadratic $F\left(R_{x}\right): \omega<0$

$U(\phi)=\frac{\bar{V}(\phi)}{8 \alpha \bar{V}(\phi)+\omega^{2}}=\frac{\underline{V}(\phi)}{8 \alpha \underline{V}(\phi)-\omega^{2}}$
with $\bar{V}(\phi)=V(\phi)-\Lambda=-\underline{V}(\phi)$

- $V=0 \Rightarrow \zeta_{0}=-\frac{\Lambda}{4 \omega}, U_{\Lambda}=\frac{\Lambda}{8 \alpha \Lambda-\omega^{2}}$

$$
V(\phi) \rightarrow \pm \infty \Rightarrow U \rightarrow U_{\alpha}=\frac{1}{8 \alpha}
$$

$\left.\begin{array}{l}\text { - } V(\phi) \sim-\lambda_{k} \phi^{k} \\ \text { - } \alpha \rightarrow+\infty\end{array}\right\} \Rightarrow k$-hilltop inflation $\Rightarrow\left\{\begin{array}{l}r \sim \frac{2}{3 \pi^{2} A_{s}} \frac{\Lambda}{8 \Lambda \alpha-\omega^{2}} \sim 0 \\ n_{s}=1-\frac{k-1}{k-2} \frac{2}{N_{e}}\end{array}\right.$

KBFI • Quadratic $F\left(R_{x}\right): \omega<0$ NICPB

- $U_{\Lambda}=\frac{\Lambda}{8 \alpha \Lambda-\omega^{2}} \rightarrow$ inflation
- $U_{\alpha}=\frac{1}{8 \alpha} \rightarrow$ CC
- α gigantic \Rightarrow usually U_{Λ} too small
ϕ

With an extreme tuning of Λ and α it is possible to keep U_{Λ} well separated from $U_{\alpha} \rightarrow$ confirmation (not a solution!) of the problem

$\mathrm{KBFI} \bullet$ General behavior of $F_{>2}\left(R_{X}\right)$

- A.R. et al., 2212.11869, 2307.02963
- $F_{>2}\left(R_{X}\right)$ i.e. $R+R_{X}^{3}, e^{R_{X}}, \ldots$
- $U(\phi)=\frac{\zeta(\phi)}{4 F^{\prime}(\zeta(\phi))}$
- inflation around plateau $\leftrightarrow \zeta_{0}$
- tail $\rightarrow 0 \Rightarrow$ CC solved?
- expand $F_{>2}(\zeta)$ in Taylor series around ζ_{0} up to the 2 nd order:

$$
\begin{aligned}
F_{2}(\zeta)=\cdots & =2 \Lambda+\omega \zeta+\alpha \zeta^{2} \\
\Lambda & =-\zeta_{0} G^{\prime}\left(\zeta_{0}\right)>0, \quad \omega=4 G^{\prime}\left(\zeta_{0}\right)<0, \quad 2 \alpha=F^{\prime \prime}\left(\zeta_{0}\right)>0 \\
G(\zeta) & =\frac{1}{4}\left[2 F(\zeta)-\zeta F^{\prime}(\zeta)\right]
\end{aligned}
$$

- same inflationary predictions as before

$\mathrm{KBFI} \bullet$ Conclusions •
 NICPB

- We studied single field inflation within Palatini $F\left(R_{X}\right)$ gravity
- $F\left(R_{X}\right)$ solves the problem of troublesome $(\partial \chi)^{2}$
- $F\left(R_{X}\right)=2 \Lambda+\omega R_{X}+\alpha R_{X}^{2}$
- asymptotically flat U 's
$\omega<0 \rightarrow$ quintessential inflation(?) but overtuned
- overtuning could be solved by $F_{>2}(R-X)$
- More studies coming soon (or later ())

KBFI • Conclusions
 NICPB

- We studied single field inflation within Palatini $F\left(R_{X}\right)$ gravity
- $F\left(R_{X}\right)$ solves the problem of troublesome $(\partial \chi)^{2}$
- $F\left(R_{X}\right)=2 \Lambda+\omega R_{X}+\alpha R_{X}^{2}$
- asymptotically flat U 's
$\omega<0 \rightarrow$ quintessential inflation(?) but overtuned
- overtuning could be solved by $F_{>2}(R-X)$
- More studies coming soon (or later ())
Grazie! - Thank you! - Aitäh!

BACKUP SLIDES

KBFI NICPB

In this case we have $U_{\alpha}>U_{\Lambda}$

Inflation happens at large ϕ close to the U_{α} plateau

In this region the potential shape can be approximated by $U(\phi) \sim U_{\alpha}\left(1-\frac{\omega^{2} U_{\alpha}}{V(\phi)}\right)$ which generalizes the polynomial α-attractors

Since for $\alpha \bar{V} \gg \omega^{2}$ we generate asymptotically flat potentials \rightarrow canonical fractional attractors

$\mathrm{KBFI} \bullet \omega>0$ configuration •

By choosing a monomial potential $V(\phi)=\frac{\lambda}{k!} \phi^{k}$ and taking the strong coupling limit we get the polynomial α-attractors prediction

The plot above shows the results for $V(\phi)=\frac{m^{2}}{2} \phi^{2}$ (blue) and $V(\phi)=\frac{\lambda}{4!} \phi^{4}($ red $)$

The plot above shows the results for $k=4$ (blue), $6($ red $), 8($ green $)$ and $V(\phi)=-e^{\lambda \phi}($ black $)$

Not every α is allowed in this case, $\alpha>\alpha_{\min }$ model dependent, but always such that $r<10^{-5}$

$\mathrm{KBFI} \bullet \omega>0$ configuration •

By choosing a monomial potential $V(\phi)=\frac{\lambda}{k!} \phi^{k}$ and taking the strong coupling limit we get the polynomial α-attractors prediction

The plot above shows the results for $V(\phi)=\frac{m^{2}}{2} \phi^{2}$ (blue) and $V(\phi)=\frac{\lambda}{4!} \phi^{4}($ red $)$

$\mathbb{A} \mathrm{KBFI} \cdot \mathrm{CC}$ tuning

It is convenient to introduce the parameter δ so that $\alpha \Lambda=\frac{\omega^{2}}{8}(1+\delta)$. We can prove that

$$
r \approx \frac{1}{12 \pi^{2} A_{s} \alpha} \frac{1+\delta}{\delta} \quad \text { when } \alpha \gg 1 \text { and } \delta \sim O(1)
$$

It is immediate to check that

$$
U_{\Lambda}=\frac{\Lambda}{8 \alpha \Lambda-\omega^{2}}=\frac{1}{8 \alpha} \frac{1+\delta}{\delta} \gtrsim \frac{1}{8 \alpha}
$$

Therefore, adjusting $U_{\alpha}=\frac{1}{8 \alpha}$ to the observed value of the vacuum energy density also lowers the inflationary plateau making its value too low to be phenomenologically consistent with the evolution of the universe. An alternative option is to take $\delta \ll 1$, but $\alpha \delta A_{s} \gg 1$ so that we still get a small value

$$
r \sim \frac{1}{12 \pi^{2} \alpha \delta A_{s}} .
$$

For instance, if we consider $U_{\alpha}=\frac{1}{8 \alpha} \sim 10^{-47} \mathrm{GeV}^{4}$ we have that $\alpha \sim 10^{122}$. In order to get a value of $r \sim 10^{-6}$ (which still corresponds to a high enough energy scale for inflation around $10^{15} \mathrm{GeV}$) we would need an extremely fine-tuned $\delta \sim 10^{-110}$.

