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Dark matter without dark matter

Primordial black holes (PBH) are a candidate for
dark matter. (Hawking 1971)

They could also seed supermassive black holes
in centers of galaxies.

Let’'s consider asteroid-mass PBHs as dark
matter.



Facilitating collapse

PBHs require large (~1) fluctuations on small scales.

They could be generated by the same process as the
small (~10-°) fluctuations on large scales.

Most successful scenario is inflation.

The curvature perturbation (in single field slow-roll) is
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The slower the field, the larger the perturbations.



Potential for asteroid-mass PBHs
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Making black holes

During inflation, k-modes stretch to super-
Hubble scales and freeze.

After inflation, they cross back inside the Hubble
radius and start evolving.

If a Hubble patch is overmassive enough, it
collapses into a PBH.

PBH mass is close to the mass inside the Hubble
patch.



Slow therefore stochastic
6+3Hp=—V'+¢

HELSIN . Because the field moves slowly, stochastic
Eor@ effects are important. (Large kicks, small force.)

Stochastic effects increase PBH production:

Patches with large fluctuations are more likely:
distribution tail is exponential, not Gaussian.

Individual patches are choppy.



All inflation is
stochastic inflation

Inflaton evolution is stochastic when the
coupling of small- and long-wavelength modes
IS taken into account. (Starobinsky 1986)

As modes become super-Hubble and
classicalise, they change the background in
which shorter modes evolve.

Amplitude of every k-mode is independently drawn
from a Gaussian distribution, so the background is
subject to Gaussian white noise.



One step at a time

HELSIN : We solve the full coupled background +
ISIVEF@ perturbation evolution numerically:

Coarse-grain a mode, recalculate the background
and perturbations at every timestep.

Continue until inflation ends, record the total
number of e-folds N.

Repeat 10" times to gather statistics.
Find distribution P(AN), where AN =N - N = .

We also reconstruct the profile {(r) inside each

patch, using a simplified treatment. (Tomberg:
2210.17441, 2304.10903)



One realisation of the curvature
perturbation {(r)
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One realisation of the compaction
function C(r)=2G,AM(r)
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Tail and spikes

Taking into account the stochastic tail for the

patch distribution enhances PBH abundance by
~10°.

Taking into account the stochastic nature of
individual patches naively enhances PBH

abundance by an extra factor of ~102-108.
(Numbers preliminary.)

Caveat: once inside Hubble radius, spikes lead to
large pressure gradients that smoothen the profile.

PBH formation simulations have to be redone.



Spiking the conclusions

Generating PBHs requires slowing down the
inflaton, in single-field models.

Stochastic effects can change PBH abundance
by many orders of magnitude.
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Asteroid-mass or Planck scale
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Stochastic kicks generate exponential tail.

(Pattison, Vennin, Assadullahi, Wands: 1707.00537; Ezquiaga, Garcia-
Bellido, Vennin: 1912.05399)

This enhances PBH abundance by ~10°.
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Curvature power spectrum
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Classical force vs quantum kicks
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Correlation of max({) and max(C)
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