Dissecting the Primordial Signal in Large-Scale Structure Power Spectra

Benjamin Wallisch

Stockholm University & UT Austin

Based on work with Daniel Green, Yi Guo & Jiashu Han (on arXiv soon!), and published work with Florian Beutler, Matteo Biagetti, Daniel Green & Anže Slosar

First Nordic Cosmology Meeting, Stockholm, October 2023

Observing Inflationary Signals

Figure by G. Pimentel

Inflationary Scales and Observational Imprints

Inflationary Scales and Observational Imprints

Snowmass Inflation White Paper (leads: Pimentel, BW & Wu)

Scale-Dependent Bias as PNG Signal in LSS

Well known: Enhancement of the galaxy power spectrum on the largest scales from local primordial non-Gaussianity

Dalal, Dore, Huterer & Shirokov; Slosar et al.; see Snowmass Inflation White Paper (leads: Pimentel, BW & Wu) and many other reviews for details

Scale-Dependent Bias Beyond the Standard Shapes

Less known: Other shapes can also induce a scale-dependent bias!

Additional (massive) fields induce a nonlocal long-distance correlation between galaxy and matter density

 \rightarrow Scale-dependent bias:

$$b(k, z) = b_1(z) + A f_{\rm NL} \frac{b_{\phi}(z)}{k^2 \mathcal{T}(k, z)} (kR_*)^{\Delta}$$

 $\Delta = 3/2 - \sqrt{9/4 - m^2/H^2}$

Scale-Dependent Bias Beyond the Standard Shapes

Less known: Other shapes can also induce a scale-dependent bias!

Additional (massive) fields induce a nonlocal long-distance correlation between galaxy and matter density

 \rightarrow Scale-dependent bias:

$$b_{\rm NG}^{\rm loc}(k,z) = f_{\rm NL}^{\rm loc} \frac{b_{\phi}(z)}{k^2 \mathcal{T}(k,z)} \text{ (local)}, \qquad \stackrel{k \to 0}{\sim} k^{-2}$$

$$b_{\rm NG}^{\rm eq}(k,z) = 3f_{\rm NL}^{\rm eq} \frac{b_{\phi}(z)}{k^2 \mathcal{T}(k,z)} (kR_*)^2 \text{ (equilateral)}, \qquad \stackrel{k \to 0}{\sim} k^0$$

$$b_{\rm NG}^{\Delta}(k,z) = 3f_{\rm NL}^{\Delta} \frac{b_{\phi}(z)}{k^2 \mathcal{T}(k,z)} (kR_*)^{\Delta} \text{ (general exponent } \Delta \in [0,2])$$

Matarrese & Verde, Schmidt & Kamionkowski, Desjacques et al., Giannantonio et al, ...

Scale-Dependent Bias Beyond the Standard Shapes

Less known: Other shapes can also induce a scale-dependent bias!

Constraints from BOSS DR12: Option 1

From the galaxy power spectrum alone and marginalizing over the galaxy bias expansion, we find large correlations:

Green, Guo, Han & BW (in prep.)

Constraints from BOSS DR12: Option 1

From the galaxy power spectrum alone and marginalizing over the galaxy bias expansion, we find large correlations and can derive from local and equilateral:

Constraints from BOSS DR12: Option 2

From the galaxy power spectrum alone and marginalizing over the galaxy bias expansion, we can directly constrain from BOSS DR12 data:

Green, Guo, Han & BW (in prep.)

Constraining Power of Future Surveys

From the galaxy power spectrum *alone*, and marginalizing over the galaxy bias expansion and cosmology (with CMB priors), we conservatively forecast:

(See the upcoming paper for more detailed forecasts, including survey specifications, multi-tracer comparisons, multi-tracer LSST, ...) Green, Gu

Green, Guo, Han & BW (in prep.)

Inflationary Scales and Observational Imprints

Snowmass Inflation White Paper (leads: Pimentel, BW & Wu)

Features in the Primordial Power Spectrum

Several inflationary (and other primordial) scenarios predict additional features:

$$egin{aligned} P_\zeta(k) &= P_{\zeta,0}(k) + \Delta P_\zeta(k) \ &P_{\zeta,0}(k) = rac{2\pi^2 A_{ ext{s}}}{k^3} igg(rac{k}{k_\star}igg)^{n_{ ext{s}}-1} \end{aligned}$$

such as

- sharp features: new physics at a certain time for all scales,

Starobinsky; Adams, Cresswell & Easther; Bean, Chen, Hailu, Tye & Xu; ...

- resonant features: background oscillates around attractor (e.g. axion monodromy),

Chen, Easter & Lim; Silverstein & Westphal; Flauger, McAllister, Pajer, Westphal & Xu; ...

- primordial standard clocks: excitation of massive fields.

Chen; Chen & Ringeval; Chen & Namjoo; Chen, Namjoo & Wang; ...

cf. Slosar, ..., BW (Astro2020); Snowmass Inflation White Paper (leads: Pimentel, BW & Wu), ...

Features in the Primordial Power Spectrum

Several inflationary (and other primordial) scenarios predict additional features:

 $P_{\zeta}(k) = P_{\zeta,0}(k) + \Delta P_{\zeta}(k) ,$

such as

- linearly-spaced oscillatory features:

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}} = A_{\rm lin} \, \sin(\omega_{\rm lin}k + \phi_{\rm lin}) \,,$$

- logarithmically-spaced oscillatory features:

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}} = A_{\log} \, \sin(\omega_{\log} \log(k/k_{\star}) + \phi_{\log}) \,.$$

First Upper Limits from LSS

Upper limits from the BOSS DR12 dataset:

 \rightarrow Feature amplitudes are limited to $\mathcal{O}(1\%)$ relative to the primordial amplitude.

Upper Limits from LSS and CMB

Upper limits from the BOSS DR12 dataset compared to Planck 2015:

- \rightarrow Feature amplitudes are limited to $\mathcal{O}(1\%)$ relative to the primordial amplitude.
- \rightarrow Competitive with current CMB constraints in available frequency range.

Future Prospects

The sensitivity to primordial features will greatly improve with future observations:

Future Prospects

The sensitivity to primordial features will greatly improve with future observations:

Summary

Theoretical insights into and observational control of LSS power spectrum analyses allow for extraction of inflationary information, in particular

 \rightarrow Primordial non-Gaussianity, also beyond the standard shapes,

 \rightarrow Primordial feature models.

Future work on higher-order spectra, cross-correlations and further non-Gaussian shapes.

See also my related work on neutrinos, light thermal relics and dark matter.

Backup Slides