

Is gravity the only dark matter interaction that matters in the physics of galaxies?

Jesús Zavala Franco Faculty of Physical Sciences, University of Iceland

First Nordic Cosmology Meeting, Nordita and OKC, Stockholm, Sweden October 2023

The Cold Dark Matter (CDM) hypothesis is the cornerstone of the current structure formation theory

2000 CPU years!!

CDM assumes that the only DM interaction that matters is gravity!!

The (incomplete) particle DM landscape

Astrophysics parameter space

min. scale galaxy formation

Adapted from: Buckley & Peter 2018

An opportunity

 Additional free DM parameters might play a key role in the physics of galaxies. The window is relatively narrow:

An <u>Effective THeory Of Structure formation</u> (ETHOS)

ETHOS~AWDM, ASIDM, AiDM (see Francis-Yan+2016, Vogelsberger+2016)

Impact on the minimum scale for galaxy formation (WDM/iDM/fuzzyDM)

Difference with the standard CDM model

CDM

* does not set minimum galactic scale* "thermal" limit to phase space density

The LSS success of ΛCDM is shared by ΛWDM, ΛSIDM, ΛiDM

ETHOS

* sets minimum galactic scale (DM-DR Silk-like damping)
* limit to phase space density set by thermalization in the inner haloes (DM self-interactions)

Adding baryonic physics: the high-z Universe

Adding baryonic physics: the high-z Universe z=6 Shen et al. 2023

see also: Lovell+2018, Lovell+2019 and Kurmus+2022

Impact on the inner dynamics of galaxies (SIDM)

SIDM (DM self-collisions) (gravothermal fluid approximation)

e.g. Balberg, Shapiro & Inagaki 2002, Koda & Shapiro 2011, Pollack, Spergel & Steinhardt 2015

Clues from the properties of dwarf galaxies

Dwarf galaxies: most DM-dominated systems: M_{DM} > 10 M_{VIS} (ordinary matter is less dynamically relevant)

The stellar dynamics is simplified and the underlying DM distribution can be more easily constrained

"Optimal" dynamical detectors of new DM physics

Diverse sub-kpc DM densities in MW satellites

CDM-only (no baryonic physics)

Is this a strong constraint on SIDM?

SIDM: fine if $\sigma/m \prec 1 \, cm^2/gr$ or $\sigma/m \gtrsim 20 \, cm^2/gr$ (at dwarf scales)

Within SIDM, core collapse is needed to alleviate diversity problem (see also Correa 2020)

Is this a strong constraint on SIDM?

SIDM with (relevant) core-collapse predicts IMBHs in the faintest dwarf galaxies

Meshveliani et al. 2023

Concluding remarks

- Whether or not gravity is the only relevant dark matter interactions in the physics of galaxies remains an open question
- The minimum mass for galaxy formation could be set by a combination of baryonic physics (reionisation/feedback) and new dark physics (e.g. free streaming, dark matter – dark radiation interactions)
- The inner structure of DM haloes in dwarf galaxies could be set by a combination of baryonic physics (assembly of the galaxy + SNe feedback) and new dark physics (e.g. self-interacting dark matter)
- The DM/baryonic physics synergy remains largely unexplored: possible degeneracies in observational comparisons, albeit undesirable, reflect our current incomplete knowledge of the DM nature and galaxy formation/evolution
- The current challenge lies in finding distinct observables between these two possibilities