Testing the relic neutrino decay solution to the EDGES anomaly and ARCADE2 excess with neutrino oscillation experiments

Rishav Roshan

School of Physics and Astronomy, University of Southampton

24/10/2023

Based on: arXiv: 2311:XXXXX, coming soon!

In collaboration with:

P.S. Bhupal DeV, Pasquale Di Bari and Ivan Mart inez-Soler

Cosmological Puzzles

- 1. Matter-Antimatter asymmetry
- 2. Dark Matter
- 3. Neutrino masses

Motivation for BSM Physics

21 cm Radiation

21 cm line of hydrogen arises from the hyperfine splitting of the 1S ground state of Hydrogen due to the spin flip transition of electron.

 $\Delta E = 5.9 \times 10^{-6} \text{ eV} = 1420 \text{ MHz} = 21 \text{ cm}$

Predicted by Van De Hulst in 1944, Discovered by Ewen and Purcell in 1951

First time revealed that Milky Way has spiral structure.

21 cm Cosmology

$$T_{21}(z) \simeq 23 \,\mathrm{mK} \left(1 + \delta_B\right) x_{H_I}(z) \,\left(\frac{\Omega_B h^2}{0.02}\right) \,\left[\left(\frac{0.15}{\Omega_{\mathrm{m}} h^2}\right) \,\left(\frac{1 + z}{10}\right)\right]^{1/2} \,\left[1 - \frac{T_A}{T_B}\right]^{1/2} \,\left[1 - \frac{T_B}{T_B}\right]^{1/2} \,\left[1$$

□ A powerful investigative astrophysical tool

Maps Hydrogen gas intervening between a source and the observer.

□ In the case of the global cosmological signal the source is the primordial radiation itself interacting with Hydrogen gas at all redshifts below z=1100 (recombination)

EDGES anomaly

- A doubled signal can be explained:
 (1) in terms of a colder gas (earlier decoupling?)
 (2) additional non-thermal backgroup
 - (2) additional non-thermal background that increases T_{γ}

The spin temperature is related to the gas temperature:

$$\left(1 - \frac{T_{\gamma}}{T_S}\right) \simeq \frac{x_c + x_{\alpha}}{1 + x_c + x_{\alpha}} \left(1 - \frac{T_{\gamma}}{T_{\text{gas}}}\right)$$

- □ EDGES measured a 21 cm (global) signal at a frequency ~ 70MHz and z_E ~ 17.2
- It finds an absorption signal that is double compared to the expected one in a cosmological standard model

ARCADE anomaly

ARCADE 2 expt. found $T_0 = 2.729$ K

Table 1.	ARCADE 2	${\it measurements}$	of the	effective	temperature
----------	----------	----------------------	--------	-----------	-------------

i	$\nu_i \; (\text{GHz})$	$E_i \ (10^{-5} \mathrm{eV})$	$T^i_{\gamma 0}$ (K)	$\overline{T}_{ m rbe}^{i}$ (mK)	$\delta \overline{T}^{i}_{\text{rbe}} (\text{mK})$
1	3.20	1.36	2.792	63	10
2	3.41	1.41	2.771	42	9
3	7.97	3.30	2.765	36	14
4	8.33	3.44	2.741	12	16
5	9.72	4.02	2.732	3	6
6	10.49	4.34	2.732	3	6
7	29.5	12.2	2.529	-200	155
8	31	12.82	2.573	-156	76
9	90	3.72	2.706	-23	19

- ARCADE2 has measured the absolute temperature of the sky in the radio frequency range 3–90 GHz.
- It found an extragalactic excess, in addition to the CMB, at the low frequency range, approx. b/w 3 and 8 GHz.

ARCADE 2 measurements are made at z=0.

(Astrophys.J. 734 (2011) 5)

FIG. 4.— The thermodynamic temperature as a function of frequency. The solid line is the best fit to the ARCADE 2 data with a constant CMB temperature plus a synchrotron like component with an assumed -2.62 index. The vertical lines are $\pm 1\sigma$. The dotted line is the FIRAS CMB temperature.

Can neutrino decay solve these anomalies?

Phys.Lett.B 790 (2019) 64-70

- □ Considered the possibility that $v_i \rightarrow v_S + \gamma$ with $m_i - m_S = E_{21} z_{decay} / z_E$
- Active neutrinos have to decay nonrelativistically.
- The specific intensity produced by the decays is found to be

$$I_{\rm nth}(E_{21}, z_E) = \frac{1}{4\pi} \frac{d\varepsilon_{\gamma_{\rm nth}}}{dE} = \frac{n_{\nu_1}^{\infty}(z_E)}{4\pi} \left(\frac{E_{21}}{\Delta m_1}\right)^{3/2} \frac{e^{-\frac{t_E}{\tau_1} \left(\frac{E_{21}}{\Delta m_1}\right)^{3/2}}}{H_E \tau_1}$$

The EDGES signal is explained imposing

$$R \equiv \frac{I_{\rm nth}(E_{21}, z_E)}{I_{CMB}(E_{21}, z_E)} = \frac{T_{\gamma_{\rm nth}}(E_{21}, z_E)}{T_{CMB}(z_E)} = R_E \equiv 1.15^{+2.15}_{-0.8}$$

or alternatively one can always interpret the EDGES results as an upper bound R < RE resulting in an excluded region.

Intriguingly the same mechanism can also explain the ARCADE excess in RB and the two allowed regions marginally overlap!

Failure of minimal model

Next-to-minimal model

Conclusions

- The anomalies observed by ARCADE-2 and EDGES are not explained within the standard cosmological model and there is currently no clear astrophysical solution so they might indicate the presence of new physics.
- The radiative decays of relic neutrinos into sterile neutrinos provide a simultaneous solution to both puzzles
- We show that, in our model, the decay of relic neutrinos into sterile neutrinos also implies active-sterile neutrino mixing and how neutrino oscillation experiments place interesting constraints on the parameters of the model.
- Neutrinos in Cosmology is not just a topic with important historical results, but it is still one of the best motivated routes to understand the cosmological puzzles

