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First order phase transitions (FOPT) in the early Universe M.Hindmarsh et al. (2020),

arXiv:2008.09136v?2
.+ Phase transitions are a generic feature of many gauge Yr TsT I'=T;
field theories / T=1,
T=F
. Usually described by a scalar field ¢ with T=0
free energy F (¢, T)
. FOPT: just below T the field ¢ is in a metastable phase
— |4
- Thermal and quantum fluctuations allow the Q A
nucleation of bubbles of the stable phase O O
Symmetric phase O
- Bubbles expand and merge filling up larger and O O
larger portions of the Universe O O
Higgs phase Higgs phase Higgs phase
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Objectives

Hydrodynamic description of a single expanding bubble:

% So far: expansion on a flat Minkowski spacetime (R, < H;l)

% In slow FOPT the timescale of the expansion is of the order of Hubble time (R, ~ H;l)

L_» Need for the full general relativistic treatment

Higgs phase

M.Hindmarsh et al. (2020),
arXiv:2008.09136v2

R, : mean bubble spacing
after nucleation of all bubbles

H!:Hubble radius at the

time when 1/e of metastable
phase remains
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gravitational waves

k) FOPT at the EW scale ( ~ 100 GeV) are
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Motivations

FOPT are a source of the stochastic background of
gravitational waves

k) FOPT at the EW scale ( ~ 100 GeV) are

experimentally interesting for the LISA mission
~ (0.1 mHz- 10 Hz

- Energy density in gravitational waves sourced
by sound waves Q. « (R, H,)" 1<n<?2

C. Caprini et al. (2016),arXiv:1512.06239v2

- Cosmological scalar perturbations ® induce

secondary gravitational waves that become
important in the limit of large bubbles
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Hydrodynamic description of a single expanding bubble

« Spherical symmetry: ds’ = —a?dt? + b*dr?® + R? (d6’2 + sin? 6’dgp2) Misner & Sharp (1964) Phys.Rev 136 B571

" = wutu® + pgt”, ut = —+0
a
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 Self similarity: E=— . Musco et al. (2013) arXiv:1201.2379v3
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Hydrodynamic description of a single expanding bubble

« Spherical symmetry: ds’ = —a?dt? + b*dr?® + R? (d6’2 + sin? «9dgp2) Misner & Sharp (1964) Phys.Rev 136 B571

" = wutu® + pgt”, ut = —+0
a

. Steady flow: Rw — R(t, rw(t)) — éwt Bubble size is a constant

fraction of Hubble radius
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Hydrodynamic description of a single expanding bubble

« Spherical symmetry: ds? = —a’dt® + b%dr? + R? (d6’2 + sin? 6’dg02) Misner & Sharp (1964) Phys.Rev 136 B571

™ = wutu” + pgt*, ut = —5Ho Py = @€y
a

. Equation of state: p =we, o =w_O(r () —r)+ o, OF —r, (1))

L’ Strength parameter: 4 6’+ —0_
o, =

at the wall 3w,

|
Trace anomaly 0 = E(e + 3p)
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Hydrodynamic description of a single expanding bubble

The profile of the bubble is given by the solution of the system of Einstein equations

G,, = 8xT,, and energy-momentum conservation V 7" = (

dinU , ” e Q-0
= [(® + wQ)* — 2¢T*D] ,
dIné U2(D + wQ)? — c21%(Q — D)2
d In € Q-0 dinU
= 20 + (1 + w) ,
ding @+ w2 dIné&
din® 1
=—(Q-00).
din¢ ©@
1 1 M M
= —0,R = —0,R Q = 4reR? O = 1-12 B

(‘ a & b QA QA R
Radial fluid 4-velocity Generalised Lorentz Energy on a shell Gravitational potential

Eulerian observer Gamma factor of radius R at radius R
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= 0,R0"R = | I

Misner & Sharp (1964)
Phys.Rev 136 B571



v_ : fluid entry speed for
an observer comoving
with the wall

Solving the EoM: deflagration solutions: v(&,)_ < ¢,

w_ = 0.333, wy = 0.200, a, = ay = 0.111 w_ = 0.333, wy = 0.200, o, = ay = 0.111

10 ” I - | . 2 . . . . . 10
Radial ﬂU|d b 5 c | | 2 Energy on a She”
. : - ' of radius R
Eulerian observer
004 A L 04 | 0.6 ]
0.8 hd
064 o 0.4
Gravitational | Generalised
potential e 0414 Lorentz
at radius R | 0.9 Gamma factor
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Deflagration solutions: v(&,)_ < ¢, - Comparison with Minkowski

Minkowski solutions Gravitating solutions
050 - 0.333, w,. = 0.200, arp. = 0.111 0.3 = 0.333, wy = 0.200, oy = o = 0.111
0.45 09 \ L0
' fluid speed
0.40 measured in the
0.8  rest frame of
Constant sound the outer ELRW
speed model 0.35 fluid
F. Giese et al.,
ArXiv:2010.09744 3 0.30 0.6 «7
0.25
0.4
0.20
0.15 0.2
0.10
0.0 0.5 1.0 0.0 0.5 1.0
g/glc g/glc
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Detonation solutions: v(§,,), > ¢, - Comparison with Minkowski

Minkowski solutions Gravitating solutions
w_ = 0.333, wy = 0.200, ay = 0.111 w_ = 0.333, wy = 0.200, a, = oy = 0.111
0.98
0.3 0.3 2.10
0.96
0.2 0.2 2.05 fluid speed
0.94 = 3 measured in the
0.1 5o  restframe of
Constant sound 0.992 0.1 ' the outer FLRW
speed model fluid
0.0 ui
F. Giese et al., 0.90 0.0 1.95
ArXiv:i2010.09744 3 W
2.00 175,
0.88 '
- 1.90
0.96 1.50
g L0 S 1.25 1.85
0.84 o Lo o
' 1.00 | %0
0.82
1.00 0.75
0.80 1.75
0.0 0.5 1.0 0.0 0.5 1.0
f/flc f/glc
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Hybrid solutions: v(§,)), = ¢, - Comparison with Minkowski

Minkowski solutions Gravitating solutions
020 w_ = 0.333, wy = 0.200, ay = 0.111 w_ = 0.333, w; = 0.200, a, = a. = 0.111
| 0.6
\ 1.0
0.75 0.4 fluid speed
- measured in the
rest frame of
Constant sound 0.70 0.2 the outer FLRW
speed model 1.5 :
fluid
F. Giese et al., 0.0
ArXiv:2010.09744 @ 0.65 ' @
0 1.4
0.60
~ 4
E | 1.3
0.55
2
0.50 1.2
0.0 0.5 1.0

f/fk
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Curvature of spatial sections around the origin & quasi-Newtonian approximation

deflagration hybrid detonation

0
1 - oo T ———%0y,
o -l //ﬂ \\\_ 0.30 0.30 0.30
Projection tensor 2,
A = — 0.25 0.25 0.25
h,uv . g;u/ + u,uul/ :@\0_3_
r::
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Expansion scalar
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Kinetic energy fraction

Kinetic energy fraction
Ly
L,

K =

E.: Kinetic energy
of the fluid

E, : Total energy in
the bubble

100_

10—4_

100_

deflagration hybrid detonation

|

0.6

gw/flc
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Conclusions...

* Self-similar gravitating bubble solutions with negative spatial curvature
near the origin exist in GR.

* GR effects modify:
1. Fluid motion and energy around the bubbles
2. Spatial curvature near the origin

3. Efficiency of conversion vacuum energy to kinetic energy
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Conclusions...

* Self-similar gravitating bubble solutions with negative spatial curvature
near the origin exist in GR.

* GR effects modify:
1. Fluid motion and energy around the bubbles
2. Spatial curvature near the origin

3. Efficiency of conversion vacuum energy to kinetic energy

... & future developments

* Fluid motion generates large scalar perturbations during the phase transition
in the limit of large bubbles

k» Secondary scalar induced GW

Primordial black holes?
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Asymptotic solutions

¢ —0

One parameter family of solutions

2
w&+®=3a+wa
Q& —> 0) = 3k&E?

D¢ - 0) = k&2

Spatial curvature at the origin

12&2 2
3) — RO)E 5 () =
R = RP(& = 0) e [k o --a)_)2]

Since we expect lower energy density in the interior
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Asymptotic solutions

E— 0 E— o0
One parameter family of solutions Flat FLRW solution
U(E > 0) = ———¢ Up=—— & 2o20, Q=30
— - = — =
3(1 +w_) 731 +w,) ap F F F F

Q(¢ — 0) = 3k¢&*
D¢ - 0) = k&2 Constant-& ob : V”=;/<—XOO> vzf_aU

— onstant-g observers: V; il —

Spatial curvature at the origin
Relative velocity between Véf

12¢° 2 VE—V
RO(3) — R(3)(§ - 0) = i [k 2] u = " and another hypothetical
R Al +w_) — YV constant-& observer that lives at
Since we expect lower energy density in the interior & the same ¢'in FLRW
L 0<k< >
o1 + w) Measure departure from FLRW
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Detonation solutions: v(&,), > ¢,

w_ = 0.333, wy = 0.200, o, = a, = 0.111 w_ = 0.333, w, = 0.200, oo, = a = 0.111
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Hybrid solutions: v(&,), = ¢,

w_ = 0.333, wy = 0.200, oy, = oy = 0.111 w_ = 0.333, wy = 0.200, oy, = oy = 0.111

2.0 1.65

8
1. 1.60

: 6
= 1.0 G 1 1.55
0.5 9 1.50
0.0 0 1.45

0.8
2.00 1.40
0.0 1.75 1.35
o 0.4 ~ 1 50 | 30
0.2 1.25 1.25
0.0 1.00 1.20
0.0 0.5 1.0 1.5 2.0

Euw



Quasi-Newtonian approximation of the spatial curvature near the origin

Linear scalar perturbations around flat FLRW (Poisson gauge) ds* = s7(n) [—(1 T 2(133)07’72 + (1 - 2‘PB)”l]dxidx]]
: . (3) 4 )
Spatial Ricci curvature scalar R = — VY,
S
oe 3
Einstein equation VzlPB ~ 47s°e (7) a 552H25

Quasi-Newtonian estimate

) ~ 6H?
RS ~ 6H?

( energy density contrast in the
Minkowski solutions
F. Giese et al.,
ArXiv:2010.09744
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Kinetic energy fraction

R

W A

E = J 4me R*dR = EQF(éw)fw,
0

— UTTY Uy, U — 2,,2
ex = 1, UPU” =1 u"u” =wusy,

Eyp = JeK4nR2dR = tJdé(l + 0)Quy,

Total amount of energy that was contained in the volume
occupied by the bubble before the transition happened

U" Observer moving outward with speed u with respect
to the fluid

Amount of the initial energy that has been transferred into
kinetic energy of the fluid

Kinetic energy fraction

E
K ==
Ly,
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Fixed points

i. (U,Q,®d)=(0,0,0)

i. U=0, Q=
U, ©, + wl2, Q —-—>d,
ii. ¢, = , U, =

?k = (U, €2, ®,) Trajectory of solutions of the

Einstein equations with initial condition k

The endpoint of?k = (U,, Q,, D,) move along a
line of fixed points y, (k) = (&, (k), 7*(16))

¢, (k) fixed by the condition a(é — 0) =1
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