Reconstructing early universe physics from future LISA data

Deanna C. Hooper

(they/them)

First Nordic Cosmology Meeting 24th October 2023

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINKI INSTITUTE OF PHYSICS

First order phase transitions in the early universe can source gravitational waves

Credits: D. J. Weir

First order phase transitions in the early universe can source gravitational waves

Modified from arXiv: 1705.01783

Finding a SGWB coming from a phase transition in LISA data will be difficult

Finding a SGWB coming from a phase transition in LISA data will be difficult

Deanna C. Hooper - University of Helsinki

Nordita, October 2023

We can go from a particle physics model to an SNR; we want to invert the process

Phase transition parameters Gravitational wave power spectrum Expected LISA signal

We can go from a particle physics model to an SNR; we want to invert the process

We can go from a particle physics model to an SNR; we want to invert the process

We want to recover the PT parameters from a double broken power law

arXiv: 2209.13551

Create a mapping between PT and shape parameters only needs to be done once!

Mapping done by building a grid and interpolating with nearest neighbours

arXiv: 2209.13551

0

Ο

O

 $\theta_n = \Theta(\tilde{\theta}_n)$

1. Build grid of PT parameters 2. Find corresponding

 $\tilde{\theta}_n$

3. For a point in shape parameter space, use a weighted interpolation in grid to reconstruct PT parameters

shape parameters

Direct sampling and reconstruction give similar results, latter is $\mathcal{O}(10^3)$ faster

- MCMC on PT parameters (green)
- MCMC on shape parameters, map to PT parameters (purple)
- Both approaches recover injected signal (dashed lines), direct is more precise
 - α : Phase transition strength
 - r*: Hubble-scaled mean bubble spacing
 - T_n : Bubble nucleation temperature
 - v_w : Wall velocity

arXiv: 2209.13551

We can get PT parameters from GW spectrum. Can we get a SGWB spectrum from LISA?

We can get PT parameters from GW spectrum. Can we get a SGWB spectrum from LISA?

What if we add more realistic noise?

How strong does a PT signal need to be in LISA so that we can recover it?

How strong does a PT signal need to be in LISA so that we can recover it?

Some of the astrophysical signals will be modulated, we want to exploit this

We think the annual modulation of galactic binaries will help disentangle this from a PT signal

LISA will help shed light on early universe physics

Summary

- We can reconstruct (strong) PT signals using parametrised templates
- We are looking for PT signals in realistic mock data

Our goal

How small can we make the injected signal and how well do we need to know the astrophysical noises?

Thanks for listening!

Get in touch! Email: <u>deanna.hooper@helsinki.fi</u>

Two approaches to MCMC: sample on PT or spectral parameters

arXiv: 2209.13551

1. Run MCMC directly on PT parameters

2. Run MCMC on spectral parameters, use mapping to recover PT parameters

We run MCMCs to see if we can recover the injected PT parameters

+2 parameters for instrument noise

+2 parameters for instrument noise, +4 parameters for white dwarf binaries