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Finding a SGWB coming from a phase 
transition in LISA data will be difficult

arXiv:1702.00786
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We can go from a particle physics model 
to an SNR; we want to invert the process
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We want to recover the PT parameters 
from a double broken power law

Create a mapping 
between PT and 
shape parameters - 
only needs to be 
done once!

arXiv: 2209.13551
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Mapping done by building a grid and 
interpolating with nearest neighbours

1. Build grid of PT 
parameters 


2. Find corresponding 
shape parameters

3. For a point in shape parameter space, use a weighted 
interpolation in grid to reconstruct PT parameters  
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Direct sampling and reconstruction give 
similar results, latter is  faster𝒪(103)
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• MCMC on PT parameters (green)


• MCMC on shape parameters, 
map to PT parameters (purple)


• Both approaches recover 
injected signal (dashed lines), 
direct is more precise

arXiv: 2209.13551
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We can get PT parameters from GW spectrum. 
Can we get a SGWB spectrum from LISA?
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We create mock data with instrument 
noise, galactic binaries and PT signal

Preliminary figures by T. Minkkinen
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The part we care 
about
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How strong does a PT signal need to 
be in LISA so that we can recover it?
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We can find this

We won’t find this
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Some of the astrophysical signals will 
be modulated, we want to exploit this
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We think the annual modulation of galactic binaries will help 
disentangle this from a PT signal 
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LISA will help shed light on early 
universe physics
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Summary 

• We can reconstruct (strong) PT signals using parametrised 
templates


• We are looking for PT signals in realistic mock data


Our goal 
How small can we make the injected signal and how well do 
we need to know the astrophysical noises?



Thanks for listening!

Get in touch!  
Email: deanna.hooper@helsinki.f 

mailto:deanna.hooper@helsinki.fi
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Injected PT SGWB

MCMC best fit thermodynamic parameters (direct)

MCMC best fit thermodynamic parameters (reconstructed)

Two approaches to MCMC: sample on 
PT or spectral parameters

1. Run MCMC directly on 
PT parameters


2. Run MCMC on 
spectral parameters, 
use mapping to 
recover PT parameters

arXiv: 2209.13551
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We run MCMCs to see if we can 
recover the injected PT parameters
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