Perturbative EFT expansions for cosmological phase transitions

Tuomas V. I. Tenkanen

In collaboration with: Oliver Gould [2104.04399, 2309.01672], Andreas Ekstedt, Philipp Schicho [2205.08815] Lauri Niemi, Michael Ramsey-Musolf and David Weir [2005.11332] Also see talk by Johan Löfgren! [2112.05472, 2112.08912]

> Helsinki Institute of Physics NORDITA, KTH and Stockholm University T.D. Lee Institute/Shanghai Jiao Tong University

> > First Nordic Cosmology Meeting, Nordita 24.10.2023

Gravitational waves from 1st order cosmological phase transition

A looking glass to thermal history of our universe, but also to underlying quantum field theory \rightarrow an opportunity to probe BSM physics!

Phase transition thermodynamics

At high T, the pressure, or effective potential in perturbation theory has formal expansion (g is the weak coupling)

$$p \simeq -V_{\text{eff}} \simeq T^{4} \Big(\underbrace{\underbrace{1 + g^{2} + g^{3}}_{V_{\text{tree}} + V_{\text{CW}} + V_{\text{T}} + V_{\text{daisy}}}_{V_{\text{tree}} + V_{\text{CW}} + V_{\text{T}} + V_{\text{daisy}}} + \underbrace{\underbrace{g^{4}}_{2\text{-loop}}}_{\text{next silde!}} + \underbrace{\underbrace{g^{5}}_{3\text{-loop}}}_{\text{upcoming!}} \Big) + \mathcal{O}(g^{6}T^{4}).$$

$$(1)$$

Slow convergence and odd powers of *g* appear at high *T* due to high occupancy of bosonic modes, that need to be resummed. Linde's IR problem: $\mathcal{O}(g^6T^4)$ non-perturbative, requires lattice QFT.

In practise, 1-loop thermal effective potential with daisy resummation is **not** accurate, but **2-loop corrections are important**! (Phase transition is generated by thermal loops, so 1-loop is *leading order*. First perturbative corrections come at 2-loops.) 2-loop thermal resummations automated in Dimensional Reduction algorithm (https://github.com/DR-algo/DRalgo)

DRalgo: a package for effective field theory approach for thermal phase transitions

by Ekstedt, Schicho and Tenkanen, Comput.Phys.Commun. 288 (2023) 108725.

Automatic 3d EFT construction for generic models: upgrades daisy resummations to 2-loops, and computes 2-loop effective potential.

SM + singlet example: critical temperature as function of RG scale μ

Gould and Tenkanen, JHEP 06 (2021) 069:

First possible RG improvement at $\mathcal{O}(g^4)$ (2-loop thermal mass, 2-loop 3d EFT V_{eff} , in contrast to T = 0 case where 1-loop is enough).

Multiple orders-of-magnitude uncertainty in the peak GW amplitude

Croon et al, JHEP 04 (2021) 055, Gould and Tenkanen, JHEP 06 (2021) 069:

Green: one-loop. Blue: $\mathcal{O}(g^4)$ (2-loop) for equilibrium thermodynamics. Yellow (estimate!): $\mathcal{O}(g^4)$ for bubble nucleation rate.

SU(2) + Higgs gauge theory

Ekstedt, Gould and Löfgren, Phys.Rev.D 106 (2022) 3, 036012, Gould, Güyer and Rummukainen, Phys.Rev.D 106 (2022) 11, 114507:

An EFT expansion: after integrating out hard thermal scale (πT) , gauge field in the broken phase is heavier (soft, gT) than transitioning Higgs field (supersoft, $g^{\frac{3}{2}}T$): integrating out gauge field leads to strict expansion in $x \equiv \frac{\lambda_3}{g_{\pi}^2}$.

EFT expansions for BSM theories (Gould and Tenkanen [2309.01672])

- 1. Integrate out UV modes and stop at the mass scale of the transitioning fields.
- ► 2. This mass scale can be identified by power counting, applied to the tree-level potential of the EFT. If apparent 2nd order transition, more modes must be integrated out. Often the final EFT lives at the *supersoft* scale (g^{3/2} T), in-between soft (gT) and *non-perturbative* ultrasoft scales (g²T).
- 3. Carry out strict perturbative expansions within the final EFT for the transitioning field.

 \rightarrow resolves lots of theoretical issues, see "The Laundry List" in the talk by Johan Löfgren (and [2301.05197]).

Supersoft EFT expansions for SM + triplet 2-step transition

Gauge invariant order parameters as function of T, for triplet (blue) and Higgs (orange); lattice (scatter points) vs 2-loop perturbation theory (solid lines).

Left: conventional expansions do not work well (Niemi et al, Phys.Rev.Lett. 126 (2021) 17, 171802)

Right: EFT expansions resolve these issues, and improves agreement with lattice (Gould and Tenkanen, [2309.01672])

luomas V. I.	Tenkanen
--------------	----------

Summary

- In past few years: major theoretical developments for perturbative determination of cosmological phase transition thermodynamics, using 3d EFT techniques. (Also see talks by Ekstedt and Lögren tomorrow!)
- It is crucial to go beyond 1-loop approximations in perturbation theory. At higher orders perturbation theory describes strong transitions rather reliably.
- ► However, lattice simulations still required to separate weak transitions from crossovers.
- ► Challenge: determination of cosmological phase transition thermodynamics up to the maximal order (~ 3-loops) in perturbation theory for generic models → sets a gold-standard which cannot be exceeded without non-perturbative lattice simulations.

Thanks!

Backup: Gauge invariant condensates

$$\langle \phi^{\dagger} \phi \rangle \equiv \frac{\partial V_{\text{eff}}}{\partial m_{\phi,3}^2}.$$
 (2)

A discontinuity in the condensate signals a first-order phase transition:

$$p'(T_{\rm c}) = -T \frac{d}{dT} V_{\rm eff}(\kappa_i) = -\sum_i T \frac{d\kappa_i}{dT} \frac{\partial V_{\rm eff}}{\partial \kappa_i}$$
$$= \eta(m_{\phi,3}^2) \langle \phi^{\dagger} \phi \rangle + \eta(\lambda_{\phi,3}) \langle (\phi^{\dagger} \phi)^2 \rangle + \dots , \qquad (3)$$

 $\eta(\kappa_i) \equiv T d\kappa_i / dT$. The η -functions (UV) are continuous in T, and condensates (IR) have discontinuities at phase transitions. V_{eff} is evaluated at its minima, which quarantees gauge invariance.

Backup: Closer look to strict perturbative expansion for real scalar theory

Gould, JHEP 04 (2021) 057:

Strict expansion – expansion around LO minima – matches lattice result extremely well! There is single expansion parameter which is dimensionless ratio of 3d EFT parameters.

Tuomas V. I. Tenkanen

EWPT in BSM theories