Reliable dynamics in a hot Universe

Andreas Ekstedt

Uppsala University

First Nordic Cosmology Meeting

The Cosmological History

Adapted from 1307.3887

Effective dynamical equations at high temperatures

Perturbative corrections to nucleation rates

Dynamical processes in a nutshell

How do fields evolve?

Classical equations of motion

$$\begin{split} &-\ddot{\phi}+\nabla^2\phi-V_{\text{eff}}'(\phi)+F_{\text{dis}}(\phi,T)+\underbrace{\zeta(x)}_{\text{Thermal noise}}=0,\\ &F_{\text{dis}}(\phi)\sim\eta_{\phi}(\phi)\dot{\phi}+\xi_{\phi}(\phi)\vec{\nabla}\cdot\vec{u} \end{split}$$

$$L = egin{cases} \lambda_c \sim T^{-1} \ \lambda_d \sim (gT)^{-1} \ \lambda_m \sim (g^4 T)^{-1} \end{cases}$$

The Compton wave-length of plasma particles The screening, or Debye, length The mean-free path between collisions

A different theory for each length scale

Screening \rightarrow Collisions & Thermal masses \rightarrow Friction, Viscosity & Noise

5 of 12

Example: Bubbles seeded by domain walls (work with Blasi)

Some recent theory results

Two-loop QED hard thermal loopsCarignano et.al 19Dense N^3LO pressureKneur, Fernandez; Seppänen, Säppi et.al 23"Almost" NLO transport coefficientsGhiglieri et.al 18Two-loop QCD hard thermal loopsEkstedt 23; Gorda et.al 23Effective theories for bubble nucleationGould, Hirvonen 21 \rightarrow Gauge invarianceTenkanen, Löfgren et.al 21Consistent expansions for scalar potentialsGould, Tenkanen 23

7 of 12

Gluon masses at two loops

 $\sim 30\%$ correction for QCD

What about hydrodynamics?

Effective energy-momentum tensor

 \rightarrow Dimensionally reduced result + dynamical terms

Dissipation : $g_{\mu\nu}T^{\mu\nu}_{dis} \sim \zeta \nabla \cdot u + \eta_{\phi}\phi^3 u \nabla \phi + ... \rightarrow \text{Soon automatized to two-loops}$

BubbleDet

Gould, Hirvonen, Ekstedt 23

Automatized one-loop nucleation rates: $\Gamma \sim A \exp(-E/T)$

Takeaway: $A \sim T^4$ is a **horrible** approximation

Perturbation expansion works

Exciting times ahead

Three-loop effective potentials & nucleation rates Scalar friction to full leading order Effective energy-momentum tensors to two loops Dynamical field equations to two loops Impact of thermal noise & viscosity effects