Bimetric and multimetric theories of gravity

Fawad Hassan
Stockholm University, Sweden

OKC@15
Oct 17-19, 2023, Stockholm

Collaborators:

- Joakim Flinckman, •Mikica Kocic,
\bullet Rachel. A. Rosen, •Angnis Schmidt-May,
\bullet Mikael von Strauss, •Anders Lundkvist, •Luis Apolo

Also in OKC:

Edvard Mörtsell, Marcus Högås, Francesco Torsello, Jonas Enander, Yashar Akrami, Marcus Berg, Stefan Sjors Juri Smirnov

Disclaimer: Many more people have contributed to this field

Outline of the talk

Motivating multi spin-2 theories
Historical timeline

Ghost-free Bimetric theory
Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories
Discussion

Outline of the talk

Motivating multi spin-2 theories

Historical timeline

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

What kind of theories do we consider in this talk?

General relativity:
The gravitational metric $g_{\mu \nu}(x)$ is a field of spin $=2$ and mass $=0$

Bimetric \& multimetric theories:
Gravity $\left(g_{\mu \nu}\right)$ coupled to other spin-2 fields, say $\left(f_{1 \mu \nu}, f_{2 \mu \nu}, \cdots\right)$

Spectrum:

A massless spin-2 state + massive spin-2 states

What kind of theories do we consider in this talk?

General relativity:
The gravitational metric $g_{\mu \nu}(x)$ is a field of $\operatorname{spin}=2$ and mass $=0$

Bimetric \& multimetric theories:

Gravity ($g_{\mu \nu}$) coupled to other spin-2 fields, say ($f_{1 \mu \nu}, f_{2 \mu \nu}, \cdots$)

Spectrum:

A massless spin-2 state + massive spin-2 states

* Are these theories useful?
(dark matter, dark energy candidates)
* Why are they interesting?
* What are the challenges?
* What is the progress?

Recall: Ghost instabilities in field theory

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (ghostly) }
$$

Consequences:

Recall: Ghost instabilities in field theory

Ghost: A field with negative kinetic energy
Example:

$$
\mathcal{L}=T-V=\left(\partial_{t} \phi\right)^{2} \ldots \quad \text { (healthy) }
$$

But

$$
\mathcal{L}=T-V=-\left(\partial_{t} \phi\right)^{2} \cdots \quad \text { (ghostly) }
$$

Consequences:

- Classical instability: unlimited energy transfer from ghost to other fields possible
- Negative quantum probabilities, violation of unitarity in quantum theory

Higher spin and the ghost problem

Number of propagating d.o.f. $\left(n_{d o f}\right)$ for a spin s field:

$$
n_{d o f}=2 s+1(\text { mass } \neq 0), \quad n_{d o f} \leq 2(\text { mass }=0)
$$

Higher spin and the ghost problem

Number of propagating d.o.f. $\left(n_{d o f}\right)$ for a spin s field:

$$
n_{d o f}=2 s+1(\text { mass } \neq 0), \quad n_{d o f} \leq 2(\text { mass }=0)
$$

But, Lorentz invariance (general covariance) requires a field with $s \geq 1$ to have more than $2 s+1$ components. Examples:
$s=1: n_{\text {dof }}=2$ or $3<$ the 4 components of A_{μ}
$s=2: n_{\text {dof }}=2$ or $5<$ the 10 components of $g_{\mu \nu}$

Higher spin and the ghost problem

Number of propagating d.o.f. $\left(n_{d o f}\right)$ for a spin s field:

$$
n_{d o f}=2 s+1(\text { mass } \neq 0), \quad n_{d o f} \leq 2(\text { mass }=0)
$$

But, Lorentz invariance (general covariance) requires a field with $s \geq 1$ to have more than $2 s+1$ components. Examples:
$s=1: n_{\text {dof }}=2$ or $3<$ the 4 components of A_{μ}
$s=2: n_{\text {dof }}=2$ or $5<$ the 10 components of $g_{\mu \nu}$
The extra components contain ghost fields. Need to be eliminated by symmetries+constraints.
(Are there enough of these?)
Ex: The Boulware-Deser ghost (1972) of massive spin-2 fields $n_{\text {dof }}=5+1$:

Ghost as a powerful tool

Absence of ghost + Lorentz/general covariance is a powerful tool that strongly restricts the correct form of the basic field equations:

Ghost as a powerful tool

Absence of ghost + Lorentz/general covariance is a powerful tool that strongly restricts the correct form of the basic field equations:

- $s=0: \quad\left(\square+m^{2}\right) \phi=0$

Klein-Gordon

- $\boldsymbol{s}=\frac{1}{2}:\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
- $s=1: \quad D_{\mu} F^{\mu \nu}=0$

Maxwell (+ Yang-Mills)

- $s=2: \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0$

Einstein

- String theory

Ghost as a powerful tool

Absence of ghost + Lorentz/general covariance is a powerful tool that strongly restricts the correct form of the basic field equations:

- $s=0: \quad\left(\square+m^{2}\right) \phi=0$

Klein-Gordon

- $\boldsymbol{s}=\frac{1}{2}:\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

Dirac

- $s=1: \quad D_{\mu} F^{\mu \nu}=0$

Maxwell (+ Yang-Mills)

- $s=2: \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0$

Einstein

- String theory

Standard Model: multiplets of $s=0, \frac{1}{2}, 1+$ intricate structures
General Relativity: The simplest possible theory of $s=2$
Beyond GR: What are the possibilities?

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$: Local theories with finite field content may not exist (cf. Higher spins, String theory)

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$: Local theories with finite field content may not exist (cf. Higher spins, String theory)
- $s=2$: Simplest possible theory is GR
(The spin-2 equivalent of $\square \phi=0 \& \partial_{\mu} F^{\mu \nu}=0$)
By contrast, SM contains multiplets:
$\phi \rightarrow$ Higgs multiplet,
$F^{\mu \nu} \rightarrow S U(3)_{c} \times S U(2)_{W} \times U(1)_{Y}$

Recall: Spin based classification of theories

- $s<2$: Well known field theories (e.g. in Standard Model)
- $s>2$. Local theories with finite field content may not exist (cf. Higher spins, String theory)
- $s=2$: Simplest possible theory is GR
(The spin-2 equivalent of $\square \phi=0 \& \partial_{\mu} F^{\mu \nu}=0$)
By contrast, SM contains multiplets:
$\phi \rightarrow$ Higgs multiplet,
$F^{\mu \nu} \rightarrow S U(3)_{c} \times S U(2)_{W} \times U(1)_{Y}$
Do theories of multiple spin-2 fields exist? Or, is GR unique?
(Unexplored corner of the theory space)

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of the space of local field theories, difficult to probe.

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of the space of local field theories, difficult to probe.
- Features relevant to gravity, dark matter, dark energy, inflation, etc.

Recap: why are multiple spin-2 theories interesting?

- Uncharted corner of the space of local field theories, difficult to probe.
- Features relevant to gravity, dark matter, dark energy, inflation, etc.
- Not demanded by experiment, but motivated by experience!

Outline of the talk

Motivating multi spin-2 theories

Historical timeline

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Historical timeline

- Einstein (GR and linearized gravity) (1915-17)
- Fierz and Pauli (linearized massive gravity) (1939)
- van Dam, Veltman, Zakharov (1970)
- Vainshtain (1972)
- Boulware, Deser (1972)
- Isham, Salam, Strathdee (1971-79)
- Creminelli, Nicolis, Papucci, Trincherini (2005)
- de Rham, Gabadadze (2010)

Outline of the talk

Motivating multi spin-2 theories

Historical timeline

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

GR + a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin- 2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+
$$

Digression:
Non dynamical $f_{\mu \nu}=\eta_{\mu \nu}$: Massive Gravity
describes a massive spin-2 (5 helicities) + a ghost (1 helicity)
A very special $V\left(g^{-1} \eta\right) \Rightarrow$ ghost-free massive gravity:
[Creminelli, Nicolis, Papucci, Trincherini, (2005)]
[de Rham, Gabadadze (2010); de Rham, Gabadadze, Tolley (2010)] [SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

GR with a generic spin-2 field

A dynamical theory of the metric $g_{\mu \nu} \&$ spin-2 field $f_{\mu \nu}$

$$
\mathcal{L}=m_{p}^{2} \sqrt{|g|} R-\sqrt{|g|} V\left(g^{-1} f\right)+\mathcal{L}(f, \nabla f)
$$

- what is $V\left(g^{-1} f\right)$?
- what is $\mathcal{L}(f, \nabla f)$?
- proof of absence of the Boulware-Deser ghost

Recall: Elementary symmetric polynomials $e_{n}(S)$

For a 4×4 matrix S with eigenvalues $\lambda_{1}, \cdots, \lambda_{4}$,

$$
\begin{aligned}
& e_{1}(S)=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} \\
& e_{2}(S)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4} \\
& e_{3}(S)=\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4} \\
& e_{4}(S)=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}, \quad e_{n>4}(S)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& e_{0}(S)=1 \\
& e_{1}(S)=\operatorname{Tr}(S) \equiv[S], \\
& e_{2}(S)=\frac{1}{2}\left([S]^{2}-\left[S^{2}\right]\right), \\
& e_{3}(S)=\frac{1}{6}\left([S]^{3}-3[S]\left[S^{2}\right]+2\left[S^{3}\right]\right), \\
& e_{4}(S)=\operatorname{det}(S), \quad e_{n>4}(S)=0 .
\end{aligned}
$$

$$
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S)
$$

The interaction potential:

$$
\begin{array}{r}
\operatorname{det}(\mathbb{1}+S)=\sum_{n=0}^{4} e_{n}(S) \\
V(S)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)
\end{array}
$$

Where:

$$
S_{\nu}^{\mu}=\left(\sqrt{g^{-1} f}\right)_{\nu}^{\mu}
$$

("a" square root of the matrix $g^{\mu \lambda} f_{\lambda \nu}$. More on this later \cdots)
[de Rham, Gabadadze, Tolley (2010)]
[SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-\sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]
Ghost-free combination of kinetic and potential terms:

$$
\mathcal{L}=m_{g}^{2} \sqrt{|g|} R_{g}-\sqrt{|g|} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)+m_{f}^{2} \sqrt{|f|} R_{f}
$$

- Bimetric structure
- $7=2+5$ nonlinear propagating modes, no BD ghost!
- No ghost \Rightarrow minimal matter couplings:

$$
\mathcal{L}_{\text {min }}(g, \psi)+\mathcal{L}_{\text {min }}\left(f, \psi^{\prime}\right)
$$

Outline of the talk

Motivating multi spin-2 theories

Historical timeline

Ghost-free Bimetric theory

Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Potential consistency problems and their solutions

A Potential problem: Incompatible spacetimes
$g_{\mu \nu} \& f_{\mu \nu}$ may not admit compatible notions of space and time (3+1 splits)

Then:

No consistent time evolution, no Hamiltonian formulation

Uniqueness and the local structure of spacetime

[SFH, M. Kocic (arXiv:1706.07806)]
The only allowed configurations: are when the null cones of $g_{\mu \nu}$ and $f_{\mu \nu}$ intersect:

Type I

Type Ila

Type Ilb

Type III

Type IV
(Implication for accausality arguments in the literature)

GR limit and applications

* Example of cosmological solution in the GR limit $\left(m_{g}=M_{P}, m_{f} / m_{g} \rightarrow 0\right)$

$$
3 H^{2}=\frac{\rho}{M_{P I}^{2}}-\frac{2}{3} \frac{\beta_{1}^{2}}{\beta_{2}} m^{2}-\alpha^{2} \frac{\beta_{1}^{2}}{3 \beta_{2}^{2}} H^{2}+\mathcal{O}\left(\alpha^{4}\right)
$$

[Akrami, SFH,Konnig,Schmidt-May,Solomon (arXiv:1503.07521)]

GR limit and applications

* Example of cosmological solution in the GR limit $\left(m_{g}=M_{P}, m_{f} / m_{g} \rightarrow 0\right)$

$$
3 H^{2}=\frac{\rho}{M_{P I}^{2}}-\frac{2}{3} \frac{\beta_{1}^{2}}{\beta_{2}} m^{2}-\alpha^{2} \frac{\beta_{1}^{2}}{3 \beta_{2}^{2}} H^{2}+\mathcal{O}\left(\alpha^{4}\right)
$$

[Akrami, SFH,Konnig,Schmidt-May,Solomon (arXiv:1503.07521)]

* More on bimetric cosmology:
* Gravitational waves
* Numerical methods
(Mörtsell, Högas, Enander)
(Smirnov et al.)
(Mikica, Torsello)
* Massive spin-2 particle as a dark matter candidate

Outline of the talk

Motivating multi spin-2 theories
 Historical timeline
 Ghost-free Bimetric theory
 Uniqueness and the local structure of spacetime

Ghost-free multi spin-2 theories

Discussion

Beyond two spin-2 fields: do they exist?

The structure is not fully known. Easier to investigate in terms of vielbeins e_{μ}^{A}. Recall

$$
g_{\mu \nu}=\eta_{A B} e_{\mu}^{A} e_{\nu}^{B}
$$

$g_{\mu \nu}: 10$ components
$e_{\mu}^{A}: 16$ components

Beyond two spin-2 fields: do they exist?

The structure is not fully known. Easier to investigate in terms of vielbeins e_{μ}^{A}. Recall

$$
g_{\mu \nu}=\eta_{A B} e_{\mu}^{A} e_{\nu}^{B}
$$

$g_{\mu \nu}: 10$ components
$e_{\mu}^{A}: 16$ components
A useful parametrization:

$$
e^{A}{ }_{\mu}=L_{B}^{A} \hat{e}^{B}{ }_{\mu}
$$

L_{B}^{A} : a local Lorentz transformation with 6 parameters
(3 Lorentz boosts +3 rotations)
\hat{e}^{B} : A "gauge fixed" vielbein fully parameterized by the 10 parameters of $g_{\mu \nu}$

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)] [SFH, Joakim Flinckman (to appear)]
Certain genuine multi spin-2 interactions for $\left(e_{l}\right)^{A}{ }_{\mu}$ can be constructed. E.g.,

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g_{l}\right|} R\left(g_{l}\right)-2 M^{4} \operatorname{det}\left(\beta^{1} e_{1}+\beta^{2} e_{2}+\cdots+\beta^{N} e_{N}\right)
$$

- Has the correct number of constraints to eliminate the ghosts.

Ghost-free multi spin-2 theories

[SFH, Angnis Schmidt-May (arXiv:1804.09723)] [SFH, Joakim Flinckman (to appear)]
Certain genuine multi spin-2 interactions for $\left(e_{l}\right)^{A}{ }_{\mu}$ can be constructed. E.g.,

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g_{l}\right|} R\left(g_{l}\right)-2 M^{4} \operatorname{det}\left(\beta^{1} e_{1}+\beta^{2} e_{2}+\cdots+\beta^{N} e_{N}\right)
$$

- Has the correct number of constraints to eliminate the ghosts.
- Certain generalizations exist

Vielbein EoM's and antisymmetrization conditions

$$
\mathcal{L}=\sum_{l=1}^{N} m_{l}^{2} \sqrt{\left|g_{l}\right|}\left(R\left(g_{l}\right)-2 \lambda_{l}\right)-2 M^{4} \operatorname{det}\left(\sum_{l=1}^{N} \beta^{\prime} e_{l}\right)
$$

Vielbein EoMs:

$$
R_{l \mu \nu}-\frac{1}{2} g_{l \mu \nu} R_{l}+V_{(\mu \nu)}^{\prime}+V_{[\mu \nu]}^{\prime}=0 \quad \Rightarrow V_{[\mu \nu]}^{\prime}=0
$$

$N=2: \quad\left(e_{1}\right)_{[\mu}^{A} \eta_{A B}\left(e_{2}\right)_{\nu]}^{B}=0 \quad \Longleftrightarrow \quad$ evaluation of $\sqrt{g^{-1} f}$
$N: \quad\left(e_{1}\right)^{A}{ }_{[\mu} \eta_{A B}\left(e_{2}+e_{3}+\cdots+e_{N}\right)^{B}{ }_{\nu]}=0, \quad$ etc.
Implications:

* The structure of null cones (3+1decompositions)
* Absence of ghosts
* More general vielbein interactions

Mass matrix

Mass eigenstates exist around proportional backgrounds

$$
\left(\bar{e}_{l}\right)_{\mu}^{A}=c_{l} \bar{e}_{\mu}^{A} \quad(\text { Einstein spacetimes })
$$

Cosmological constant: $\Lambda=c_{l}^{2} \lambda_{I}+M^{4} \frac{\beta_{l}}{m_{l}^{2} c_{l}}\left(\sum_{J}^{N} c_{J} \beta_{J}\right)^{3}$
(these determine the c_{l})
Parametrization of fluctuations (computable to all orders):

$$
\left(e_{l}\right)_{\mu}^{A}=L_{l B}^{A}\left(\hat{e}_{l}\right)_{\mu}^{A}=\left(\eta+A_{l}\right)^{-1}\left(\eta-A_{l}\right)\left(c_{l} \bar{e}_{\mu}^{A}+E_{l \mu}^{A}\left(\delta g_{l}\right)\right)
$$

Mass matrix :

$$
M_{l J}=\frac{1}{4} M^{4} k^{2}\left(k \frac{\beta_{l}}{m_{l}^{2} c_{l}} \delta_{l J}-\frac{\beta_{I} \beta_{J}}{m_{l} m_{J}}\right)
$$

Easy to see the mass $=0$ eigenstate.

Outline of the talk

```
Motivating multi spin-2 theories
Historical timeline
Ghost-free Bimetric theory
Uniqueness and the local structure of spacetime
Ghost-free multi spin-2 theories
```

Discussion

Discussion

The beginnings of understanding spin-2 fields beyond General Relativity

Discussion

The beginnings of understanding spin-2 fields beyond General Relativity

- Causality
- Superluminality? (yes, not necessarily harmful)
- Unavoidable mixings of mass eigenstates (unlike neutrino mixings)
- Systematics of multispin-2 interactions? Though certain "basic" extensions can be constructed and argued to be ghost free. Is there a formulation purely in terms of metrics?
- Extra symmetries \Rightarrow Modified kinetic terms? MacDowell-Mansouri type theories. More interesting but less understood.

Thank you！

