unimpeded (& other cosmological inference tools)

Will Handley <wh260@cam.ac.uk>

Royal Society University Research Fellow Astrophysics Group, Cavendish Laboratory, University of Cambridge Kavli Institute for Cosmology, Cambridge Gonville & Caius College willhandley.co.uk/talks

19th October 2023

Highlighted tools for this audience

- 1. anesthetic [1905.04768]
 - how to get the most out of your nested sampling runs
 - github.com/handley-lab/anesthetic
- 2. margarine [2207.11457]
 - easy-to-use (neural) density estimation for marginal statistics
 - github.com/htjb/margarine
- 3. prescience [2309.06942]
 - Fully Bayesian forecasts (no more need for Fisher)
 - github.com/ThomasGesseyJones/FullyBayesianForecastsExample
- 4. unimpeded
 - up/downloading tool for transfering inference products (beyond chains)
 - sithub.com/handley-lab/unimpeded

Marginal inference

- Many cosmological likelihoods come with nuisance parameters that have limited relevance for onward inference.
- Notation: $\mathcal{L} = P(D|\theta, \alpha, M)$
 - \mathcal{L} Likelihood
 - D Data
 - heta Cosmological parameters
 - $\alpha~$ Nuisance parameters
 - M Model

(e.g. CMB), (e.g. Ω_m, H₀...), (e.g. A_{planck}...), (e.g. ΛCDM).

(e.g. plik),

- Some marginal statistics (e.g. marginal means, posteriors...) are easy to compute.
- More machinery is needed for e.g. nuisance marginalised likelihoods and marginal KL divergences D_{KL}.

Will Handley <wh260@cam.ac.uk>

Relevant examples for this audience

- 1. CMB
 - ▶ Galatic foreground parameters: A_i, n_i,...
 - Calibration: *c*, *y*,...
- 2. Gravitational wave events
 - Nuisance event parameters: M_1 , M_2 , θ , ϕ , r, z, ...
- 3. (time-delay) supernovae
 - Nuisance lens parameters: Φ_{lens}
 - Supernova systematics
 - Many modern cosmological problems present themselves in hierarchical form
- These (often well-studied) objects have a set of event-specific parameters α alongside parameters of global interest θ (e.g. H₀).
- Ideally we would be able to have a "nuisance marginalised" likelihood for combining hierarchically.

Nuisance marginalised likelihoods: Theory [2207.11457]

Bayes theorem

$$\mathcal{L}(\theta, \alpha) \times \pi(\theta, \alpha) = \mathcal{P}(\theta, \alpha) \times \mathcal{Z}$$
 (1)

Likelihood × Prior = Posterior × Evidence

 α : nuisance parameters, θ : cosmo parameters.

Marginal Bayes theorem

 $\mathcal{L}(\theta) \times \pi(\theta) = \mathcal{P}(\theta) \times \mathcal{Z}$ (2)

Non-trivially gives nuisance-free likelihood

$$\left| \mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)} \right| = \frac{\int \mathcal{L}(\theta, \alpha)\pi(\theta, \alpha)d\alpha}{\int \pi(\theta, \alpha)d\alpha} \quad (3)$$

Key properties

- Given datasets A and B, each with own nuisance parameters α_A and α_B:
- If you use L_A(θ), you get the same (marginal) posterior and evidence if you had run with nuisance parameters α_A (ditto B).
- If you run inference on L_A(θ) × L_B(θ), you get the same (marginal) posterior and evidence if you had run with all nuisance parameters α_A, α_B on.

(weak marginal consistency requirements on joint $\pi(\theta, \alpha_A, \alpha_B)$ and marginal priors)

- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- $\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$ For a constraint of the format of the
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
 - Emulators usually much faster than original likelihoods
 - Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
 - e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- $\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta), \pi(\theta)$ from marginal samples.
 - Emulators usually much faster than original likelihoods
 - Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
 - e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- To compute the nuisance marginalised likelihood, need: $\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta), \pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

Harry Bevins

- $\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta), \pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- $\mathcal{L}(heta) = rac{\mathcal{P}(heta)\mathcal{Z}}{\pi(heta)}$
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

- $\mathcal{L}(heta) = rac{\mathcal{P}(heta)\mathcal{Z}}{\pi(heta)}$
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

Harry Bevins

- $\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$
- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta), \pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

Harry Bevins

 $\pi(\theta, \alpha)$

Nested Sampling

 $\{\theta, \alpha\}_{\mathcal{P}}$

 $\mathcal{P}(\theta)$

 $\mathcal{L}(\theta)$

PhD→JRF

 \mathcal{Z}

 $\mathcal{L}(\theta, \alpha)$

Harry Bevins

- To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence \mathcal{Z}
 - 2. Marginal prior and posterior densities
- 1. Use nested sampling to compute evidence \mathcal{Z} and marginal samples $\{\theta, \alpha\}_{\mathcal{P}}$ and $\{\theta, \alpha\}_{\pi}$.
- 2. Use normalising flows to compute density estimators $\mathcal{P}(\theta)$, $\pi(\theta)$ from marginal samples.
- Emulators usually much faster than original likelihoods
- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.

Combination

Will Handley <wh260@cam.ac.uk>

- Papamakarios et al [1912.02762] (normalising flows)
- Alsing et al [1903.00007] (Delfi)
- Nested sampling with any prior you like (Alsing & Handley) [2102.12478]
- margarine (theory) Bevins et al [2207.11457]
- margarine (practice) Bevins et al [2205.12841]

unimpeded

Universal Model comparison and Parameter Estimation Distributed over Every Dataset

- Python tool for seamlessly downloading, uploading and cacheing of chains
- Data stored on zenodo
- hdf5 storage for fast & reliable storage
- anesthetic compatible for processing of chains [1905.04768]
- α-testers wanted! (email wh260@cam.ac.uk)
- End goal community library which everyone contributes to so expensive inference products are reusable and reused.

from unimpeded import Unimpeded
store = Unimpeded(cache='data.hdf5')
samps = store('planck')
samps.H0.plot.kde_1d()
samps.H0.plot.kde_1d()

Inference Legacy Archive

- DiRAC 2020 RAC allocation of 30MCPUh
- Main goal: Planck Legacy Archive equivalent
- ▶ Parameter estimation → Model comparison
- ► MCMC → Nested sampling
- ▶ Planck \rightarrow {Planck, DESY1, BAO, ...}
- Pairwise combinations
- Suite of tools for processing these
 - anesthetic 2.0
 - unimpeded 1.0
 - zenodo archive
 - margarine
- MCMC chains also available.
- Library of bijectors emulators for fast re-use

Will Handley <wh260@cam.ac.uk>

Will Handlev <wh260@cam.ac.uk>

Cosmological forecasting

Have you ever done a Fisher forecast, and then felt Bayesian guilt?

- Cosmologists are interested in forecasting what a Bayesian analysis of future data might produce.
- Useful for:
 - white papers/grants.
 - optimising existing instruments/strategies,
 - picking theory/observation to explore next.
- To do this properly:
 - 1. start from current knowledge $\pi(\theta)$, derived from current data
 - 2. Pick potential dataset D that might be collected from P(D) (= Z)
 - 3. Derive posterior $P(\theta|D)$
 - 4. Summarise science (e.g. constraint on θ , ability to perform model comparison)

- This procedure should be marginalised over:
 - 1. All possible parameters θ (consistent with prior knowledge)
 - 2. All possible data D
- i.e. marginalised over the joint $P(\theta, D) = P(D|\theta)P(\theta).$
- Historically this has proven very challenging.
- Most analyses assume a fiducial cosmology θ_* , and/or a Gaussian likelihood/posterior (c.f. Fisher forecasting).
- This runs the risk of biasing forecasts by baking in a given theory/data realisation.

Fully Bayesian Forecasting [2309.06942]

Thomas Gessey-Jones

PhD

- Simulation based inference gives us the language to marginalise over parameters θ and possible future data D.
- Evidence networks [2305.11241] give us the ability to do this at scale for forecasting.
- Demonstrated in 21cm global experiments, marginalising over:
 - theoretical uncertainty
 - foreground uncertainty
 - systematic uncertainty
- Able to say "at 67mK radiometer noise", have a 50% chance of 5σ Bayes factor detection.
- Can use to optimise instrument design
- Re-usable package: prescience
- Will Handley <wh260@cam.ac.uk>

- 1. anesthetic [1905.04768]
 - how to get the most out of your nested sampling runs
 - github.com/handley-lab/anesthetic
- 2. margarine [2207.11457]
 - easy-to-use (neural) density estimation for marginal statistics
 - sithub.com/htjb/margarine
- 3. prescience [2309.06942]
 - Fully Bayesian forecasts (no more need for Fisher)
 - sithub.com/ThomasGesseyJones/FullyBayesianForecastsExample
- 4. unimpeded
 - up/downloading tool for transfering inference products (beyond chains)
 - github.com/handley-lab/unimpeded