Self-interacting Gravitational Atoms in the Strong Gravity Regime

Alexandra Wernersson GRAPPA, University of Amsterdam

Collaborators: Dr. Horng Sheng Chia (Princeton), Christoffel Doormann (King's College), Dr. Tanja Hinderer (Utrecht University), Dr. Samaya Nissanke (University of Amsterdam) Based on: *JCAP* 04 (2023) 018, arXiv:2212.11948 **[gr-qc]**

Outline

O Motivation:

- Probe dark matter around black holes **O** Goals:
 - Study/Quantify dark matter behavior around black holes
- **O** Results
 - Bosonic field profile around black hole with self-interactions
- O Conclusions & future outlooks

• Among one of the first fully non-linear exploration with numerical relativity

Part I: Dark Matter around Black Holes

Superradiance

Ultralight bosons, $\mu \in [10^{-20}, 10^{-10}]$ eV, may form clouds around Black holes through the *superradiance process*:

Instability criteria (for cloud growth):

Credit: Katy Clough, Thomas Helfer

Gravitational atoms

O Compare to a hydrogen atom (see M. Baryakhtar, R.Lasenby, X. Huang et. al.)

O Fine-structure like constant:

 $\phi_{nlm}(t,{f r})=R_{nl}(r)Y_{lm}(heta,\phi)e^{-i(\omega_{nlm}-\mu)t}$

 $|nlm\rangle = |211\rangle$ (2p state) Fundamental mode for the scalar case

Credit: HSC

Gravitational Wave signatures

O Resonant & "Ionization" signals (see work by H.S. Chia et. al.)

O Continuous Gravitational Waves

(see KKY. Ng, C. Yuan, et al.)

Monochromatic signal due to annihilation

O Environmental effects

Dephasing of GW waveform (see work by P. Cole et. al.)

Credit: HSC

Part I I: Numerical Boson Clouds

Numerical boson clouds

O Spectral solver KADATH (P. Grandclement) (Solve Initial Data for Einstein-Klein-Gordon system)

- 1. Solve for metric quantities Ψ, N
- 2. Solve for scalar field Φ

Credit: C. Doormann

Free field profile

• Numerical solution

- Analytical solution (derived for small α)

Free field profile

Now include a self-interacting term; $V(\Phi) \propto \lambda \Phi^4$

Backreaction & Self-interactions effects On Metric Quantities

 N/\overline{N}

Marginal effect on the metric quantities even for large cloud mass, M_c , 1.5% and 0.7% for N and Ψ respectively.

Cloud mass and self-interactions

For the free field approximately; $M_c \sim A^2$ Find a non-trivial, approximately quadratic scaling $M_c \sim (A\lambda)^2$

Conclusions and outlook

Numerical investigation of self-interacting boson clouds; including Quantifying effects of backreaction & self-interaction

 Interesting properties of self-interacting fields and more directions to go in! (Eigenfrequencies, tidal deformabilities)

Use results as initial data for dynamical evolution

Back-up slides:

Resonance Frequencies

Credit: HSC, arXiv:1804.03208

Numerical boson clouds

O Einstein equation's \longrightarrow Set of evolution equations

 $g_{\mu
u}=-N^2dt^2+\gamma_{ij}(dx^i+eta^i dt)(dx^j+eta^j dt)$

O Spacetime is characterized by:

- *N* Lapse function
- Ψ Conformal factor
- β Shift vector

