Free-Streaming Neutrinos in the Early Universe

Benjamin Wallisch

Stockholm University & UT Austin

OKC@15 Symposium, Stockholm University, October 2023

Status: Cosmological Radiation Constraints

5-10% constraint on effective number of relativistic degrees of freedom:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

BUT: Are we actually detecting neutrinos (via gravity)?

Cosmic Neutrinos

Gravitationally important properties of neutrinos:

• (Radiation) energy density $\bar{\rho}_{\nu}$.

→ Measurements consistent with expected $N_{\text{eff}}^{\text{SM}} = 3.044$.

• Neutrino masses m_{ν} .

--> No detection, but unimportant in the early universe.

Free-streaming after their decoupling around t ~ 1 s.
→ Can we detect this?

Cosmic Microwave Background Anisotropies

1 in 10,000

Cosmic Microwave Background Anisotropies

Planck, ACT & SPT Collaborations

Cosmic Sound Waves

In the early universe, photons and baryons were strongly coupled.

Perturbations excited sound waves in the photon-baryon fluid:

These acoustic oscillations are what we observe in the CMB power spectra:

$$\delta_{\gamma} \sim A_{\vec{k}} \cos(c_s k \tau) , \qquad c_s^2 \sim \frac{c^2}{3(1+R_b)}$$

inflation/initial conditions sound waves

CMB Power Spectra

Planck Collaboration

Cosmic Neutrinos

Free-Streaming Neutrinos

What distinguishes free-streaming and non-free-streaming neutrinos observationally?

Free-streaming neutrinos overtake the photons and baryons and pull them ahead of the sound horizon:

Phase Shift in the CMB Spectrum

This corresponds to a frequency, amplitude and especially phase shift in the CMB power spectrum:

Free-streaming neutrinos are a causal way to produce such a coherent shift.

Baumann, Green, Meyers & BW

Bashinsky & Seljak

Phase Shift in the CMB Spectrum

Freese, Montefalcone & BW (in prep.)

Phase Shift in the CMB Spectrum

Based on Planck 2013 temperature data:

Follin et al.

Work in progress (preliminary):

• Current data, including polarization: • Planck 2018: $N_{\nu}^{\delta\phi} = 2.7^{+0.5}_{-0.4}$ • + ACT + SPT: $\sigma(N_{\nu}^{\delta\phi}) \sim 0.3$

• Forecasts:

- SO: $\sigma(N_{\nu}^{\delta\phi}) \sim 0.2$ CMB-S4: $\sigma(N_{\nu}^{\delta\phi}) \sim 0.1$
- Perturbation-based template, ...

Freese, Montefalcone & BW (in prep.)

Baryon Acoustic Oscillations in Large-Scale Structure

Phase Shift in the BAO Spectrum

The phase is immune to the effects of nonlinear gravitational evolution.

Baumann, Green & Zaldarriaga

Generalized BAO Analysis

Baumann, Green & BW

First Constraint

The neutrino-induced phase shift can be measured in the BOSS DR12 dataset:

This is a proof of principle for directly extracting information on neutrinos (and other light relics) from galaxy clustering data.

Future observations will greatly improve on this first measurement.

Summary

Theoretical insights into and observational control of CMB and LSS power spectra analyses allow for extraction of additional physical information.

Example here (but much more possible):

Neutrinos are free-streaming particles in the early universe!

- Phase shift is a robust signature of free-streaming neutrinos.
- We can constrain this property of neutrinos in current CMB and LSS surveys.
- Interesting improvements in sensitivity are forthcoming.

Backup Slides

Free-Streaming Neutrinos

What distinguishes free-streaming and non-free-streaming radiation observationally?

Free-streaming neutrinos overtake the photons and induce metric fluctuations ahead of the sound horizon:

Eisenstein, Seo and White (2007)

Phase shift in the CMB

Baryon Acoustic Oscillations

Eisenstein, Seo and White

Phase shift in LSS

Baumann, Green & BW

Phase Shift in Configuration Space

Baumann, Beutler, ..., BW, ...

Future Prospects

Future observations will greatly improve on this first measurement of the phase:

