Spectral Features From Pulsars and Dark Matter in the Local Cosmic-Ray Electron and Positron Flux

arXiv:2206.04699 & arXiv:2304.07317

Isabelle John isabelle.john@fysik.su.se

17 October 2023 OKC@15 Stockholm

With Tim Linden

centre

Cosmic-Ray Electrons and Positrons

Experimental

Cosmic-Ray Electrons and Positrons

Experimental

Modelling

Propagation and Energy Losses

Positron source e.g. pulsars or dark matter

Propagation and Energy Losses

Synchrotron radiation in magnetic fields

Isabelle John

Inverse-Compton scattering on ambient photons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

2. High-energy positrons lose energy faster than low-energy positrons

Spectrum of an Individual Pulsar

Sharp Spectral Features?

- Annihilating dark matter would produce sharp spectral features

• Energy loss processes set up a tension of pulsar feature with dark matter

Continuous energy loss rate:

$\frac{dE}{dt} = -\frac{4}{3}\sigma_T \left(\frac{E}{m_e}\right)^2 \left[\rho_B + \sum_i \rho_i(\nu_i)S(E,\nu_i)\right]$ Synchrotron radiation Inverse-Compton scattering in magnetic fields on ambient ISRF photons

Isabelle John

Energy Loss Rate

- σ_T : Thomson cross section
- E_e : Electron energy
- m_{ρ} : Electron mass
- *u_i*: ISRF photon energy density
- ν_i : ISRF photon energy
- S: Klein-Nishina suppression

0KC@15

Synchrotron Losses

Average energy loss per interaction:

Isabelle John

$$\left(\frac{B}{1\ \mu G}\right) \left(\frac{E_e}{1\ \text{TeV}}\right)^2$$

For typical magnetic field strength $B \sim 3 \mu G$ and electron energy $E_{\rho} = 100$ TeV

 $\approx 1.8 \text{ keV}$

Synchrotron losses are small and approximately continuous.

Inverse-Compton Scattering

High energy electrons scatter with photons of the interstellar radiation field

Inverse Compton Scattering

$$\frac{dE_e}{dt} = -\frac{4}{3}\sigma_T c \left(\frac{E_e}{m_e}\right)^2 \sum_i u_i \left(\nu_i\right) S_i \left(E_e, u_i\right) V_i \left(E_e,$$

Interstellar Radiation Field (ISRF):

- CMB photons •
- IR radiation
- Starlight ullet
- UV radiation \bullet
- σ_T : Thomson cross section
- E_{ρ} : Electron energy
- m_e : Electron mass
- u_i : ISRF photon energy densities
- ν_i : ISRF photon energy

S_i: Klein-Nishina suppression

0KC@15

Inverse-Compton Scattering: Continuous Modelling Fails

Average energy loss per ICS interaction

at E = 1 TeV $\rightarrow 0.007 \text{ TeV}$ at E = 10 TeV $\rightarrow 0.4$ TeV at E = 100 TeV $\rightarrow 10$ TeV \approx

Isabelle John

Modelling Energy Losses

Continuous energy loss rate:

Approximately continuous.

Isabelle John

Inverse-Compton scattering on ambient ISRF photons

ICS is a stochastic process
with catastrophic energy losses.

Stochastic Inverse-Compton Scattering Model [I. John & T. Linden, arXiv:2206.04699]

- 1. Create positron with some initial energy
- 2. Evolve in time steps:
 - Calculate synchrotron energy losses
 - happens and at what photon energy
 - If ICS: Calculate energy loss and new positron energy
- Repeat until desired cooling time is reached 3.

• Based on positron energy, determine if inverse-Compton scattering

Stochasticity of Inverse-Compton Scattering

Stochastic ICS:

- ICS interactions are rare (~110 interactions in 342 kyr)
- Catastrophic energy losses (~10-100% of energy lost)
- ~30% spread in final positron energy distribution

Continuous calculation:

• All positrons are treated the same way, cool down to exactly the same energy

Positron Spectrum of Individual Pulsar

Example Pulsar: Geminga Age: 342 kyr Distance: 250 pc

Sharp spectral features introduced by continuous approximation are smoothened out by ~50% when correctly treating inverse-Compton scattering stochastically

Isabelle John

Analytic Model: Hooper et. al, arXiv:0810.1527

Work in Progress: Spectra For A Range of Pulsar Models

[I. John & T. Linden, arXiv:23xx.xxxx]

Isabelle John

Pulsars and Dark Matter Can Be Distinguished

Isabelle John

Positron Injection from Pulsars and Dark Matter

Pulsars

Burst-like injection of e^+e^-

Distribution of $e^+e^$ injection energies (power law)

Isabelle John

Leptophilic Dark Matter

Continuous injection of e^+e^-

Sharply peaked $e^+e^$ injection energy (corresponding to dark matter mass)

0KC@15

Catastrophic and Rare Inverse-Compton Scattering [I. John & T. Linden, arXiv:2304.07317]

0KC@15

Energy Loss Times

Isabelle John

Energy losses happen slower in stochastic model than in continuous model

Enhancement of Dark Matter Signal

Isabelle John

$\chi\chi \rightarrow e^+e^ \langle \sigma v \rangle = 10^{-24} \text{ cm}^3/\text{s}$ $m_{DM} = 100 \text{ TeV}$ $B = 1 \mu G$

Near the dark matter mass, the spectral cutoff is enhanced by about a factor of 2.6

Increased Detectability: Dependence on Energy Resolution

5 % energy resolution

Isabelle John

Increased Detectability: Dependence on Energy Resolution

1 % energy resolution Expected for e.g. HERD

Isabelle John

Dark Matter Signal is Enhanced

5 % energy resolution

Isabelle John

1 % energy resolution

Implications of Stochastic ICS

Pulsars do not produce sharp spectral features

[arXiv:2206.04699]

Dark matter is the only known astrophysical mechanism that can produce sharp spectral features in the e^+e^- flux.

Isabelle John

Leptophilic dark matter signal is enhanced

[arXiv:2304.07317]

Isabelle John

Extra Slides

Dark Matter Annihilation into Muons

Isabelle John

- Dark matter annihilates into $\mu^+\mu^-$ that subsequently decay into e^+e^-
- e^+e^- are injected at a distribution of energies
- Enhancement is smaller than in direct e^+e^- case
- Enhancement is further reduced for annihilations into $\tau^+\tau^-$ and other hadronic final states

Stochasticity of Inverse-Compton Scattering

Stochastic ICS:

- ICS interactions are rare (~110 interactions in 342 kyr)
- Catastrophic energy losses (~10-100% of energy lost)
- ~30% spread in final positron energy distribution

Continuous calculation:

• All positrons are treated the same way, cool down to exactly the same energy

Interstellar Radiation Fields and Magnetic Fields

Isabelle John

0KC@15

Inverse-Compton Energy Losses [I. John & T. Linden, arXiv:2304.07317]

Isabelle John

ICS interactions are rare, but take a large fraction of the energy in a single interaction, especially at high energies

Implications for Pulsar Models

- Pulsars do not produce sharp features
- Recent papers that fit pulsars to the positron data require large number of pulsars to wash out sharp features below 500 GeV: Possibly only smaller number of pulsars needed to fit positron flux
- Loosens constraints on number of contributing pulsars

Orusa et al., arXiv:2107.06300

Isabelle John

Cholis & Krommydas, arXiv:2111.05864

