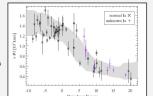
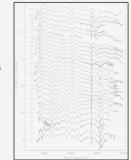

Scientific exploration

in the era of high throughput astronomical observatories.

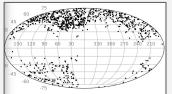


Scientific exploration

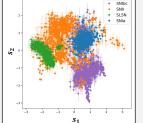
in the era of high throughput astronomical observatories.



2008: 4 high-z SNe (Master)


2012: ~40 SDSS SNe (OKC)

Field growing up (or was it OKC?)



2014: ~400 SNfactory (they exist!)

2023: ~2000 ZTF SNe Ia

2025: ~20000 ZTF SNe

Here be robots!

~2030: ~100000 LSST SNe

How to allow scientific creativity / diversity when pipelines need to be efficient and experts are needed to develop+train models?

... related to:

- 1. Rerunning complex analysis with systematic modifications (calibration!, how it started)
- 2. Code-to-data
- 3. Reproducibility / FAIR workflows
- 4. Collaborative, sustainable software development

Requires structure where:

- A scientific idea can be encoded using "normal" tools (i.e. python)
- Domain specific software can be executed
- Method exists to run the above at high speed, while guaranteeing provenance and reproducibility.

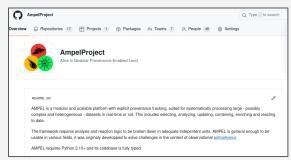
Science analysis encoded as job for flexible execution

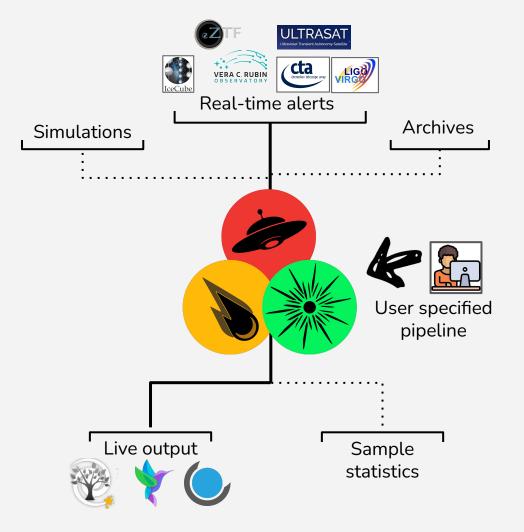
Distributed, stored & orchestrated.

AMPEL

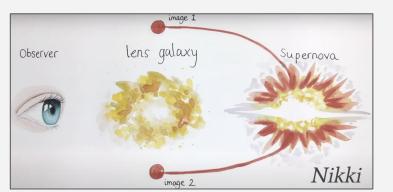
Analysis and workflow framework for high throughput time-domain astronomy.

DB designed for (evolving) knowledge of transients.

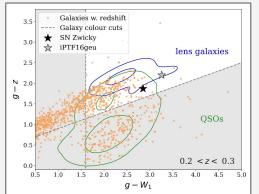



Use astronomers tools: python / catalogs / ...

Realizes code-to-data in astronomy.


https://github.com/AmpelAstro

AMPEL



Case of Searching for Gravitationally Lensed Supernovae

		Light curve colour cut (>)	
Phase (days)	g-r	g-i	r-i
$t_0 - 7$	-0.08	-0.08	-0.34
t_0	0.12	0.06	-0.28
$t_0 + 7$	0.33	0.33	-0.23

Ana

"Domain knowledge" suggest target region as combination of lightcurve and host galaxy properties.

1. Encode parameter space

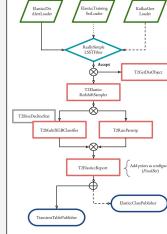
		Light curve colour cut (>)	
Phase (days)	g-r	g-i	r-i
$t_0 - 7$	-0.08	-0.08	-0.34
t_0	0.12	0.06	-0.28
$t_0 + 7$	0.33	0.33	-0.23

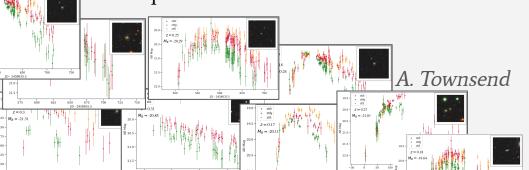
2. Identify required units

class T2RunSncosmo(AbsTiedStateT2Unit, AbsTabulatedT2Unit):
"""
Gathers information and runs Sncosmo. Steps include:
- Obtain model (read from file unless not in sncosmo registry)

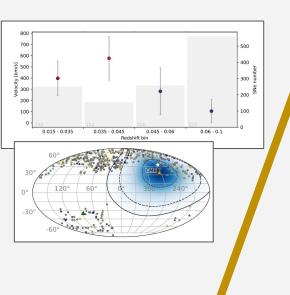
... or interface a new

4. Upload to live instance

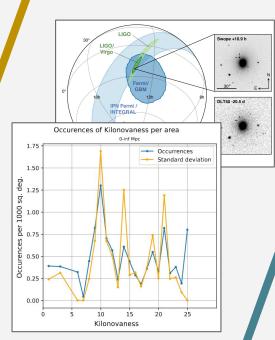

.... or process the full archive



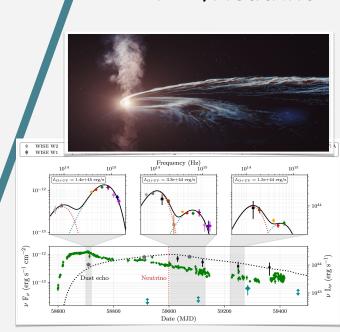
3. Run job locally

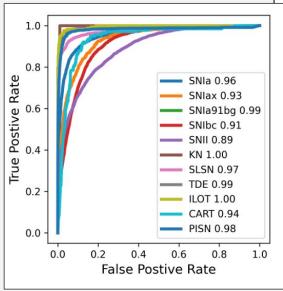






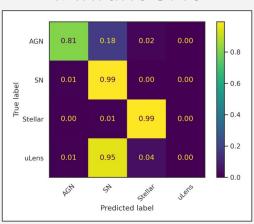
Sample projects

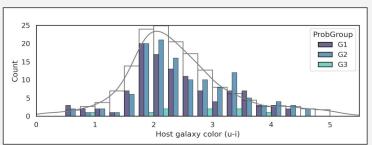

Mapping the Universe


TDE/Neutrino

Getting ready for LSST: ELAsTiCC simulation

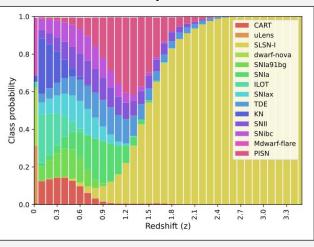
AMPEL provided best-in-class extragalactic classifications. Will be made available for users in real time.


Jakob Nordin


OKC15

Getting ready for LSST: ELAsTiCC simulation

... but that is not what you will want to use.


I. Infant SNe

II. Unbiased labeling

III. Max posterior

Three sample classifications, tuned for different goals. Each can be further optimized.

Run the AMPEL ELAsTiCC classifiers:

Try it out (with python3.10 + poetry):

- git clone --branch elasticc2 https://github.com/AmpelAstro/Ampel-HU-astro.git
- cd Ampel-HU-astro/
- poetry install -E "ztf sncosmo extcats notebook elasticc"
- ampel config build -out ampel_conf.yaml >& ampel_conf.log
- ampel job --config ampel_conf.yaml --schema examples/elasticc_alerttar.yml

Will install a local AMPEL environment, download sample ELAsTiCC alerts and run three ML classifiers.

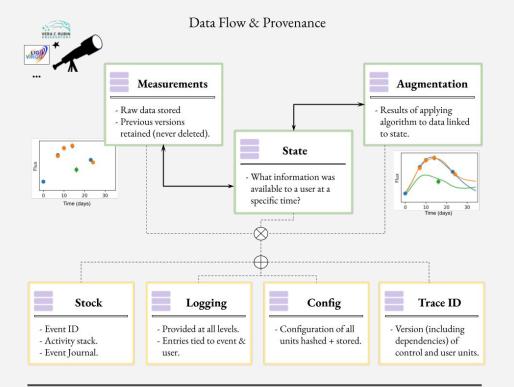
Can be modified to include new classifiers - would enter the DESC challenge!

OKC15

Summary

- LSST + LVK + SKA + CTA + Icecube/KM3NeT + ULTRASAT + ZTF/LS4/BlackGem/...
 - Exciting times!
 - How do we "explore" these data floods?

- Using the large transient counts requires dedicated fast pipelines
 - Already throwing away most of the data
 - Not enough that an ML model exists how do you use it?
- No need to reinvent the wheel tools exist
 - But you have to learn how to drive
- Ampel is one toolbox for time-domain data processing
 - Photometric ZTF samples around the corner 10x larger
 - User workflows can be applied to full alert streams



Provenance schema

AMPEL systematically records every transient state* as an immutable object. Results always tied to a state.

The version (TraceID) and config of every operation is recorded in the DB, Logs and Journal trace the history of every Stock.

A workflow is specified by a job schema, which can distributed, mounted in a container and uploaded to a live instance.

Workflow management

^{*} A state is the collection of data points associated with an (assumed) object at a specific time and visible to a specific user.

Requirements: Flexibility CS algorithms Scalable Provenance

Requirements: Flexibility CS algorithms Scalable Provenance

Implications: Modularity

Interfaces, [python]

DB / unit independence

Immutability, workflow, ...

Flexibility Scalable Requirements: **CS** algorithms Provenance **Implications: Modularity** Immutability, Interfaces, DB / unit independence [python] workflow, ... Four distinct **AMPEL:** The State Local job, Base classes, git common tools integration action tiers

Require

Implicat

AMPI

Lessons:

Combining speed, flexibility and provenance is hard...

... mix of CS, domain knowledge & information theory...

... but possible. 30k lines of code (V. Brinnel!)

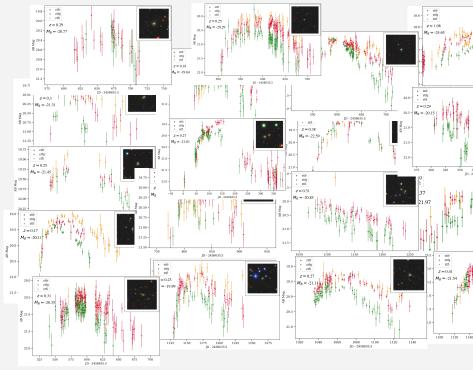
Not suitable for everything. Scope important.

Ampel-core: general tool for provenance focus analysis of data streams. Other applications?

Provenance

lmmutability, workflow, ...

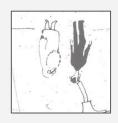
The State



P2: Searching for gravitationally lensed supernovae

ZTF detects ~100 000 transients each night. Data exists from 2018.

Systematically reprocess all archived data, incorporate astronomical catalogs + apply custom model.


A Townsend worked to subset of ~20 candidates. Many are Superluminous Supernovae, but not all...

Preparation is key

"Inverted" work order:

- (1) Get some data
- 2 Develop analysis (software)
- (3) Conclude based on results

- 3 Define project hypothesis
- (2) Develop and test model
- (1) Connect to data streams