Winter School 2024
 Problem Sheet / Introduction to cosmology

Units: $\hbar=c=1$ and the metric signature is $(-,+,+,+)$.
Comment: Please focus on the problems you find most informative.

Problem 1 [Redshift]

Here, we derive the redshift of light from the geodesic equation, which describes the trajectory $x^{\mu}(\lambda)$ of a freely falling particle on a curved background. It reads

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \lambda^{2}}=-\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \lambda}\left(\partial_{\alpha} g_{\beta \lambda}+\partial_{\beta} g_{\alpha \lambda}-\partial_{\lambda} g_{\alpha \beta}\right) \tag{2}
\end{equation*}
$$

is the Christoffel symbol (also recall that $g^{\alpha \lambda} g_{\lambda \beta}=\delta_{\beta}^{\alpha}$).
(a) Assuming a flat FRW geometry with spacetime interval $d s^{2}=$ $-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}$, show that the only non-vanishing Christoffel symbols are those with one time index; explicitly

$$
\begin{equation*}
\Gamma_{i j}^{0}=\frac{\dot{a}}{a} g_{i j}, \quad \text { and } \quad \Gamma_{0 j}^{i}=\Gamma_{j 0}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i} . \tag{3}
\end{equation*}
$$

(b) Evaluate the $\mu=0$ component of (1) in terms of the four momentum $P^{\mu}=d x^{\mu} / d \lambda=\left(E, p^{i}\right)$. Using $P^{\mu} P_{\mu}=g_{\mu \nu} P^{\mu} P^{\nu}=0$, show that it can be written as

$$
\begin{equation*}
\frac{d}{d t} \ln (a E)=0 \tag{4}
\end{equation*}
$$

(c) Using $E=h / \lambda$, derive from this the photon redshift $z=\left(\lambda\left(t_{0}\right)-\right.$ $\lambda(t)) / \lambda(t)$ (with $t<t_{0}$) in terms of the scale factor $a(t)$ (w.l.o.g. you can assume that $a\left(t_{0}\right)=1$).

Problem 2 [EMT]

The FRW ansatz for the energy momentum tensor (EMT) is $T_{\nu}^{\mu}=$ $\operatorname{diag}(-\rho, P, P, P)$ where $\rho(t)$ and $P(t)$ are the energy and pressure densities, respectively. Its covariant conservation equation is

$$
\begin{equation*}
\nabla_{\mu} T_{\nu}^{\mu}=\partial_{\mu} T_{\nu}^{\mu}+\Gamma_{\lambda \mu}^{\mu} T_{\nu}^{\lambda}-\Gamma_{\nu \mu}^{\lambda} T_{\lambda}^{\mu}=0 \tag{5}
\end{equation*}
$$

(a) By using (2), derive from the $\nu=0$ component

$$
\begin{equation*}
\dot{\rho}+3 H(\rho+P)=0 . \tag{6}
\end{equation*}
$$

(b) Show that (6) recovers the thermodynamic relation $d U=-P d V$ with $U=\rho V$ and $V \propto a^{3}$.
(c) Solve the conservation equation for a fluid with general (but constant) equation of state, i.e., $P=w \rho$.

Problem 3 [Friedmann equation]
To gain intuition, we follow a heuristic derivation of the Friedmann equation based on a non-relativistic Newtonian analysis. Consider a sphere of mass density $\rho(t)$ and radius $R(t)$.
(a) Argue that a non-relativistic test particle on the surface of the sphere experiences the acceleration

$$
\begin{equation*}
\ddot{R}=-\frac{4 \pi G}{3} R \rho \tag{7}
\end{equation*}
$$

Derive from this, assuming the constancy of the total mass enclosed in the ball ball of radius $R(t)$,

$$
\begin{equation*}
\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi G}{3} \rho+\frac{2 E}{R^{2}} \tag{8}
\end{equation*}
$$

where E is an integration constant. What is its interpretation? The Friedmann equation follows when we identify $R=a R_{0}$ and $E=$ $-k / 2$.
(b) For vanishing spatial curvature k, the Friedmann equations in physical time read

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho, \quad \frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 P) . \tag{9}
\end{equation*}
$$

Express them in terms of conformal time η.
(c) Solve the Friedmann equations for a universe dominated by a fluid with constant equation of state parameter $-1 / 3<w<1$ using a simple power-law ansatz, both in physical time t and conformal time η. Impose $a\left(t_{0}\right)=1$.

Problem 4 [Gauge freedom]

Consider the perturbed FRW geometry (in conformal time η),

$$
\begin{align*}
& d s^{2}=a^{2}(\eta)\left\{-(1+2 A) d \eta^{2}+2 \partial_{i} B d x^{i} d \eta+\right. \\
& {\left.\left[\left(1+2 C-\frac{2}{3} \nabla^{2} E\right) \delta_{i j}+2 \partial_{i} \partial_{j} E\right] d x^{i} d x^{j}\right\} } \tag{10}
\end{align*}
$$

where $A(\eta, \mathbf{x}), B(\eta, \mathbf{x}), C(\eta, \mathbf{x})$ and $E(\eta, \mathbf{x})$ are small scalar perturbations that break the background isotropy and inhomogeneity (we drop tensor
and vector perturbations for simplicity). The metric transforms under a general coordinate transformation $\tilde{x}^{\alpha}(x)$ as

$$
\begin{equation*}
g_{\mu \nu}(x)=\frac{\partial \tilde{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial \tilde{x}^{\beta}}{\partial x^{\nu}} \tilde{g}_{\alpha \beta}(\tilde{x}) . \tag{11}
\end{equation*}
$$

(a) Next, we consider small transformations $\tilde{x}^{\mu}=x^{\mu}+\xi^{\mu}\left(\xi^{\mu} \ll x^{\mu}\right)$, which we decompose as $\xi^{\mu}=\left(\xi^{0}, \partial^{i} \xi\right)$. Use (11), to derive the transformation law of $A(\eta, \mathbf{x})$ valid at linear order in ξ^{μ}. The other transformations can be derived in the same way. Overall, they are:

$$
\begin{array}{ll}
\tilde{A}=A-\left(\xi^{0}\right)^{\prime}-\mathcal{H} \xi^{0}, & \tilde{B}=B+\xi^{0}-\xi^{\prime} \\
\tilde{C}=C-\mathcal{H} \xi^{0}-\frac{1}{3} \nabla^{2} \xi & \tilde{E}=E-\xi
\end{array}
$$

where $\mathcal{H}=a^{\prime}(\eta) / a(\eta)$.
(b) Argue that ξ^{μ} offers enough freedom to realize the Newtonian gauge, i.e. $\tilde{B}=\tilde{E}=0$ and $\tilde{A} \equiv \Psi$ and $\tilde{C} \equiv-\Phi$. Work out the transformation that takes you from the Newtonian to the spatially flat gauge, defined through $\tilde{C}=\tilde{E}=0$ (a convenient gauge for calculating inflationary perturbations).

Problem 5 [Comoving curvature perturbation]
An important quantity in cosmological perturbation theory is the comoving curvature perturbation. Using the ansatz in (10), it is given by (in momentum space)

$$
\begin{equation*}
\mathcal{R}=-C-\frac{1}{3} k^{2} E-\mathcal{H}(v+B) \tag{13}
\end{equation*}
$$

where $T_{0}^{i} \equiv-(\bar{\rho}+\bar{P}) i k_{i} v$.
(a) Using that the bulk velocity transforms as $\tilde{v}=v+\xi^{\prime}$ alongside the transformation in (12), show that \mathcal{R} is gauge-invariant. Evaluate it in terms of the Newtonian gauge variable Φ.
(b) Recall the following perturbation equations from the lecture (in Newtonian gauge, assuming $\Psi=\Phi$):

$$
\begin{align*}
v^{\prime} & =-\left(\mathcal{H}+\frac{\bar{P}^{\prime}}{\bar{\rho}+\bar{P}}\right) v-\frac{1}{\bar{\rho}+\bar{P}} \delta P-\Phi \tag{14a}\\
4 \pi G a^{2} \delta \rho & =-k^{2} \Phi-3 \mathcal{H}\left(\Phi^{\prime}+\mathcal{H} \Phi\right) \tag{14b}\\
4 \pi G a^{2}(\bar{\rho}+\bar{P}) v & =-\left(\Phi^{\prime}+\mathcal{H} \Phi\right) \tag{14c}
\end{align*}
$$

Use the above equations (alongside the background Friedmann equation) to show that

$$
\begin{equation*}
(\bar{\rho}+\bar{P}) \frac{\mathcal{R}^{\prime}}{\mathcal{H}}=\left(\delta P-\frac{\bar{P}^{\prime}}{\bar{\rho}^{\prime}} \delta \rho\right)-\frac{\bar{P}^{\prime}}{\bar{\rho}^{\prime}} \frac{k^{2} \Phi}{4 \pi G a^{2}} . \tag{15}
\end{equation*}
$$

Conclude that for $k \ll \mathcal{H}$, we have $\mathcal{R}^{\prime} / \mathcal{H}=\mathcal{O}\left(k^{2} / \mathcal{H}^{2}\right) \simeq 0$, provided the adiabatic condition $\delta P / \delta \rho=P^{\prime} / \rho^{\prime}$ is fulfilled. In other words, \mathcal{R} is conserved on superhorizon scales.
(c) Show that for a background fluid with equation of state $w=$ const, we have (for $k \ll \mathcal{H}$)

$$
\begin{equation*}
\mathcal{R}=\frac{5+3 w}{3(1+w)} \Phi+\mathcal{O}\left(k^{2} / \mathcal{H}^{2}\right) . \tag{16}
\end{equation*}
$$

Using the conservation of \mathcal{R}, we conclude that Φ is not conserved as we go from radiation $(w=1 / 3)$ to matter domination $(w=0)$.

