
Winter School 2024
Problem Sheet / Introduction to cosmology

Units: ~ = c = 1 and the metric signature is (−,+,+,+).
Comment: Please focus on the problems you find most informative.

Problem 1 [Redshift]

Here, we derive the redshift of light from the geodesic equation, which
describes the trajectory xµ(λ) of a freely falling particle on a curved
background. It reads

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (1)

where

Γµαβ =
1

2
gµλ (∂αgβλ + ∂βgαλ − ∂λgαβ) (2)

is the Christoffel symbol (also recall that gαλgλβ = δαβ ).

(a) Assuming a flat FRW geometry with spacetime interval ds2 =
−dt2 + a2(t)δijdx

idxj, show that the only non-vanishing Christoffel
symbols are those with one time index; explicitly

Γ0
ij =

ȧ

a
gij , and Γi0j = Γij0 =

ȧ

a
δij . (3)

(b) Evaluate the µ = 0 component of (1) in terms of the four momentum
P µ = dxµ/dλ = (E, pi). Using P µPµ = gµνP

µP ν = 0, show that it
can be written as

d

dt
ln (aE) = 0 . (4)

(c) Using E = h/λ, derive from this the photon redshift z = (λ(t0) −
λ(t))/λ(t) (with t < t0) in terms of the scale factor a(t) (w.l.o.g.
you can assume that a(t0) = 1).

Problem 2 [EMT]

The FRW ansatz for the energy momentum tensor (EMT) is T µν =
diag(−ρ, P, P, P ) where ρ(t) and P (t) are the energy and pressure den-
sities, respectively. Its covariant conservation equation is

∇µT
µ
ν = ∂µT

µ
ν + ΓµλµT

λ
ν − ΓλνµT

µ
λ = 0 . (5)

(a) By using (2), derive from the ν = 0 component

ρ̇+ 3H(ρ+ P ) = 0 . (6)
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(b) Show that (6) recovers the thermodynamic relation dU = −PdV
with U = ρV and V ∝ a3.

(c) Solve the conservation equation for a fluid with general (but con-
stant) equation of state, i.e., P = wρ.

Problem 3 [Friedmann equation]

To gain intuition, we follow a heuristic derivation of the Friedmann equa-
tion based on a non-relativistic Newtonian analysis. Consider a sphere
of mass density ρ(t) and radius R(t).

(a) Argue that a non-relativistic test particle on the surface of the sphe-
re experiences the acceleration

R̈ = −4πG

3
Rρ . (7)

Derive from this, assuming the constancy of the total mass enclosed
in the ball ball of radius R(t),(

Ṙ

R

)2

=
8πG

3
ρ+

2E

R2
, (8)

where E is an integration constant. What is its interpretation? The
Friedmann equation follows when we identify R = aR0 and E =
−k/2.

(b) For vanishing spatial curvature k, the Friedmann equations in phy-
sical time read(

ȧ

a

)2

=
8πG

3
ρ ,

ä

a
= −4πG

3
(ρ+ 3P ) . (9)

Express them in terms of conformal time η.

(c) Solve the Friedmann equations for a universe dominated by a fluid
with constant equation of state parameter −1/3 < w < 1 using
a simple power-law ansatz, both in physical time t and conformal
time η. Impose a(t0) = 1.

Problem 4 [Gauge freedom]

Consider the perturbed FRW geometry (in conformal time η),

ds2 = a2(η)
{
− (1 + 2A)dη2 + 2∂iBdx

idη+[
(1 + 2C − 2

3
∇2E)δij + 2∂i∂jE

]
dxidxj

}
(10)

where A(η,x),B(η,x), C(η,x) and E(η,x) are small scalar perturbations
that break the background isotropy and inhomogeneity (we drop tensor
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and vector perturbations for simplicity). The metric transforms under a
general coordinate transformation x̃α(x) as

gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃) . (11)

(a) Next, we consider small transformations x̃µ = xµ + ξµ (ξµ � xµ),
which we decompose as ξµ = (ξ0, ∂iξ). Use (11), to derive the trans-
formation law of A(η,x) valid at linear order in ξµ. The other trans-
formations can be derived in the same way. Overall, they are:

Ã = A− (ξ0)′ −Hξ0 , B̃ = B + ξ0 − ξ′ ,

C̃ = C −Hξ0 − 1

3
∇2ξ Ẽ = E − ξ , (12)

where H = a′(η)/a(η).

(b) Argue that ξµ offers enough freedom to realize the Newtonian gauge,
i.e. B̃ = Ẽ = 0 and Ã ≡ Ψ and C̃ ≡ −Φ. Work out the transforma-
tion that takes you from the Newtonian to the spatially flat gauge,
defined through C̃ = Ẽ = 0 (a convenient gauge for calculating
inflationary perturbations).

Problem 5 [Comoving curvature perturbation]

An important quantity in cosmological perturbation theory is the como-
ving curvature perturbation. Using the ansatz in (10), it is given by (in
momentum space)

R = −C − 1

3
k2E −H(v +B) , (13)

where T i0 ≡ −(ρ̄+ P̄ )ikiv.

(a) Using that the bulk velocity transforms as ṽ = v + ξ′ alongside the trans-
formation in (12), show that R is gauge-invariant. Evaluate it in terms of
the Newtonian gauge variable Φ.

(b) Recall the following perturbation equations from the lecture (in Newtonian
gauge, assuming Ψ = Φ):

v′ = −(H +
P̄ ′

ρ̄+ P̄
)v − 1

ρ̄+ P̄
δP − Φ (14a)

4πGa2δρ = −k2Φ− 3H (Φ′ +HΦ) (14b)

4πGa2(ρ̄+ P̄ )v = − (Φ′ +HΦ) (14c)

Use the above equations (alongside the background Friedmann equation)
to show that

(ρ̄+ P̄ )
R′

H
=

(
δP − P̄ ′

ρ̄′
δρ

)
− P̄ ′

ρ̄′
k2Φ

4πGa2
. (15)
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Conclude that for k � H, we have R′/H = O(k2/H2) ' 0, provided
the adiabatic condition δP/δρ = P ′/ρ′ is fulfilled. In other words, R is
conserved on superhorizon scales.

(c) Show that for a background fluid with equation of state w = const, we
have (for k � H)

R =
5 + 3w

3(1 + w)
Φ +O(k2/H2) . (16)

Using the conservation of R, we conclude that Φ is not conserved as we
go from radiation (w = 1/3) to matter domination (w = 0).
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