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Abstract

In this seminar we discuss how the physical mesonic and baryonic
amplitudes depend on the θ angle and we compute the couplings that
violate strong CP invariance.
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1 Introduction
The Lagrangian of Yang-Mills theory contains, in addition to the usual term,
also a topological term:

L = −1

4
F a
µνF

aµν − θq(x) (1)

where q(x) is the topological charge density given by:

q(x) =
g2

32π2
F a
µνF̃

aµν ; F̃ µν =
1

2
ϵµνρσFρσ (2)

The additional term violates the invariance under CP . This is called strong
CP violation to distinguish it from the CP violation present in the weak sec-
tor of the Standard Model. Experiments, however, do not show any violation
of strong CP and require a very small value for θ < 10−9.

In this seminar we will determine the dependence of physical quantities
on θ and study the processes that violate strong CP . The most efficient
way of doing this is to use the low energy effective Lagrangian of QCD that
contains the fields of the pseudoscalar mesons and baryons instead of the
original quarks and gluons. This is due to the fact that in the effective
Lagrangian the effect of the axial U(1) anomaly is explicitly displayed and
because of this the amplitudes for the hadronic processes can be easily com-
puted. This Lagrangian cannot be explicitly derived from the fundamental
QCD Lagrangian as in the CPN−1 model 1, but can only be constructed
requiring that it has the same anomalous and non-anomalous symmetries of
the fundamental QCD Lagrangian.
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The logic for constructing such an effective Lagrangian is the following.
If we neglect the quark mass matrix the QCD Lagrangian with Nf quark
flavours has a U (Nf )×U (Nf ) chiral symmetry that is spontaneously broken
to the diagonal vectorial U (Nf )V . The pseudoscalar bosons are the Gold-
stone bosons corresponding to the spontaneous breaking of the chiral sym-
metry and are exactly massless in the chiral limit when the quark masses are
put to zero. In the realistic world, however, the light quarks are not massless,
but have a mass that is small with respect to the scale ΛQCD. At low energy
the pseudosclar bosons are described by the following chiral Lagrangian:

L =
1

2
Tr
(
∂µU∂µU

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †)) (3)

where U contains the fields of the pseudoscalar mesons, that are composite
states of a quark and an antiquark:

Uij = −2
√
2mi

µ2
iFπ

Ψ̄R;i ·ΨL;j ; ΨR,L =
1± γ5

2
Ψ (4)

Fπ = 95MeV is the pion decay constant The central dot in the first equation
means that there is a sum over colour indices. We take the mass matrices of
both the quarks and mesons to be diagonal and real:

mij = miδij ; Mij = µ2
i δij (5)

They are related by the Gell-Mann, Oakes and Renner relation:

µ2
iF

2
π = −2mi < Ψ̄i ·Ψi > (6)

implying that the ratio mi

µ2
i

is independent of i. Notice that Eq. (4) is a
consequence of Eq. (5) and of the following equation:

Uij

< Uij >
= 2

Ψ̄R;i ·ΨL;j

< Ψ̄i ·Ψj >
(7)

It can be easily checked that the first term in the Lagrangian in Eq. (3) is
invariant, as the QCD Lagrangian without the term involving the masses of
the quarks, under the chiral U (Nf )×U (Nf ) group that acts on U as follows:

U → AUB†;U † → BU †A†;A−1 = A† ; B−1 = B† (8)
1 See for instance Ref. [1] and References therein
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while the mass term breaks explicitly this symmetry precisely as the quark
mass matrix does in QCD. The chiral symmetry is spontaneously broken by
imposing that the meson field satisfies the constraint:

UU † =
F 2
π

2
(9)

that implies:

U(x) =
Fπ√
2
ei

√
2Φ(x)/Fπ Φ(x) = Πaτa +

S√
Nf

(10)

where τa are the generators of SU (Nf ) in the fundamental representation
normalized as

Tr
[
τaτ b

]
= δab (11)

In the case of a U(3) flavour symmetry Πa(x) corresponds the the fields
of the octet of the pseudoscalar mesons, while S is a SU(3) singlet. In this
case we get:

Πaτa =
1√
2

 π0 + η8/
√
3

√
2π+

√
2k+

√
2π− −π0 + η8/

√
3

√
2k0

√
2k−

√
2k̄0 −2η8/

√
3

 (12)

Lagrangian in Eq. (3) does not contain, however, the effect of the U(1) axial
anomaly because, apart from the mass term, it is invariant under the axial
U(1), while this is not the case for QCD. This effect can be included by
adding a term containing the topological charge density :

L =
1

2
Tr
(
∂µU∂µU

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †))+ i

2
q(x) Tr

(
logU − logU †)

(13)
Once we have introduced the extra field q(x) we could also include an

arbitrary power of it. However it turns out that in the large number Nc of
colours we need to introduce only a quadratic term because higher powers
of q are negligible when Nc → ∞. In this way we arrive at the following
Lagrangian:

L =
1

2
Tr
(
∂µU∂µU

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †))+ i

2
q(x) Tr

(
logU − logU †)+ q2

aF 2
π

(14)
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In the next sections we add to this Lagrangian also a term with the θ angle
and the baryons, we study the dependence of the physical quantities on θ and
we compute processes which violate strong CP . The results that we review
here have been originally found in Refs. [2, 3, 4, 5, 6, 7, 8] and appeared in the
review in Ref. [1].

Finally in the last section of this seminar we include in the effective action
the field of the axion and we use it to determine in a clean way its mass. These
results have been obtained together with Gabriele Veneziano [9].

2 Adding the θ angle
In this section we start from the effective Lagrangian in Eq. (14) with the
addition of the term with the θ angle:

L =
1

2
Tr
(
∂µU∂µU

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †))+ i

2
q(x) Tr

(
logU − logU †)

+
q2

aF 2
π

− θq (15)

We can eliminate q through its equation of motion:

q(x) =
aF 2

π

2

[
θ − i

2
q(x) Tr

(
logU − logU †)] (16)

and we get:

L =
1

2
Tr
(
∂µU∂µU

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †))−aF 2

π

4

[
θ − i

2
Tr
(
logU − logU †)]2

(17)
Since UU † is proportional to the unit matrix and the mass matrix is diagonal
the vacuum expectation value of U must be of the type:

< Uij >= e−iϕiδij
Fπ√
2

(18)

where ϕi are quantities that are determined by minimizing the energy as we
will see soon. It is convenient to introduce the matrix V that has a vacuum
expectation value proportional to the unit matrix:

Uij = Vije
−iϕi ; < Vij >=

Fπ√
2
δij (19)
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and rewrite Eq. (17) in terms of the field V . We get (Mij(θ) = µ2
i cosϕiδij) :

L =
1

2
Tr
(
∂µV ∂µV

†)+ aF 2
π

16

[
Tr
(
log V − log V †)]2

+
Fπ

2
√
2
Tr

(
M(θ)

(
V + V †)− 2Fπ√

2

)

+
F 2
π

2

Nf∑
i=1

µ2
i cosϕi −

aF 2
π

4

θ −
Nf∑
i=1

ϕi

2

+ i

θ −
Nf∑
i=1

ϕi

 Fπ√
2

[
aFπ

2
√
2
Tr
(
log V − log V †)− (V − V †)] (20)

The angles ϕi are determined by minimizing the energy that follows from the
previous Lagrangian, namely:

E =
F 2
π

2

a
2

θ −
Nf∑
i=1

ϕi

2

−
Nf∑
i=1

µ2
i cosϕi

 (21)

that implies the following set of equations:

µ2
i sinϕi = a

θ −
Nf∑
i=1

ϕi

 ; i = 1 . . . Nf (22)

Inserting for V the expressions given in Eq. (10) for U we get:

L =
1

2
Tr
(
∂µV ∂µV

†)− aNf

2
S2 +

F 2
π

2
Tr

[
M(θ)

(
cos

√
2Φ

Fπ

− 1

)]
+

+
aFπ√
2

θ −
Nf∑
i=1

ϕi

Tr

[
Fπ√
2
sin

√
2Φ

Fπ

− Φ

] (23)

where Φ is given in Eq. (10).
The way to proceed is the following. First we have to solve Eq.s (22) that

determine ϕi as a function of θ, a and µ2
i . Then insert them in the effective

Lagrangian in Eq. (23) that will depend on θ, a and µ2
i . Before we proceed
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it is useful to show that the quantities that we will extract from the previous
effective Lagrangian will be invariant under the shift θ → θ+2π. This follows
from the fact that, if we have found a solution ϕi(θ) of Eq.s (22) then it is
easy to show that also the following will be a solution:

ϕ1(θ + 2π) = ϕ1(θ) + 2π ; ϕi(θ + 2π) = ϕi(θ) ; i = 2 . . . Nf (24)

But the physical quantities depend only on eiϕi and therefore are invariant
under a shift of 2π of the θ angle.

It is also clear that strong CP is conserved if θ −
∑Nf

i=1 ϕi = 0. This
happens when:

1. θ = 0 that implies that ϕi = 0,

2. the mass of a quark flavour is zero

3. and also sometimes if θ = π.

3 The Witten-Veneziano relation
In order to get the Witten-Veneziano relation we have to consider the theory
without fermions. In this case the original effective Lagrangian in Eq. (15)
becomes:

Lnoferm. =
q2

aF 2
π

− θq − iqJ (25)

where we have added an external source that is coupled to the topological
charge density q. From the previous expression one can compute the partition
function:

Z(J, θ) ≡ e−iW (J,θ) = e−iV4aF 2
π(θ+iJ)2/4 (26)

The vacuum energy is equal to:

E(θ) ≡ W (0, θ)

V4

=
aF 2

π

4
θ2 (27)

From it we get:
d2E(θ)

dθ2

∣∣∣∣
θ=0

=
aF 2

π

2
(28)
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On the other hand the mass of the singlet field can be obtained from the
effective Lagrangian in Eq. (23) and it is equal to:

M2
S = aNf (29)

Putting together Eq.s (28) and (29) we get the Witten-Veneziano relation:

M2
S =

2Nf

Fπ

d2E(θ)

dθ2

∣∣∣∣
θ=0

(30)

4 Strong CP violating mesonic amplitudes
We start this section by solving the minimization equations in Eq. (21) in
the case of two flavours and in the limit where a >> µ2

1, µ
2
2. In this case we

must impose that θ = ϕ1 + ϕ2 and the minimization equations become:

µ2
1 sinϕ1 = µ2

2 sin (θ − ϕ1) (31)

that can be easily solved giving:

sinϕ1 =
µ2
2 sin θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

; sinϕ2 =
µ2
1 sin θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(32)
and

cosϕ1 =
µ2
1 + µ2

2 cos θ√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

; cosϕ2 =
µ2
2 + µ2

1 cos θ√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(33)
Computing the corresponding energy in Eq. (21) we get:

E(θ) = −F 2
π

2

√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ (34)

For equal masses (µ1 = µ2 = µ) we get:

E(θ) = −F 2
πµ

2

∣∣∣∣cos θ2
∣∣∣∣ (35)

Notice that both Eq.s (34) and (35) are periodic of period 2π in θ. We have
solved the minimization equation in the limit in which a >> µ2

1, µ
2
2. Let us

add the first correction. We have to solve the following equations:

µ2
1 sinϕ1 = µ2

2 sinϕ2 = a (θ − ϕ1 − ϕ2) (36)
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and let us insert in it the following expansion:

ϕ1,2 = ϕ̄1,2 + ϵδϕ1,2 ; ϵ =
µ1µ2

a
(37)

One gets:

ϕ1 = ϕ̄1 − ϵ
sin θ

R3

µ2
2 + µ2

1 cos θ

µ2
1

;ϕ2 = ϕ̄2 − ϵ
sin θ

R3

µ2
1 + µ2

2 cos θ

µ2
1

(38)

where ϕ̄1,2 is the previous solution:

ϕ̄1 + ϕ̄1 = θ ; R =

√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

µ2
1µ

2
2

(39)

Using the previous expression we can compute the coefficient of the CP
violating term:

θ − ϕ1 − ϕ2 = ϵ
sin θ

R
=

µ2
1µ

2
2 sin θ

a
√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(40)

It is vanishing if θ = 0 or if µ2
1 and/or µ2

2 are equal to zero. If µ1 ̸= µ2 it is
also zero for θ = π. But if µ1 = µ2 ≡ µ we get:

θ − ϕ1 − ϕ2 =
µ2

a
̸= 0 (41)

In conclusion if µ1 = µ2 then CP is violated at θ = π.
From the CP violating term in Eq. (23) we can extract a cubic term in

the fields of the pseudoscalar mesons that is given by:

−
a
(
θ −

∑Nf

i=1 ϕi

)
3
√
2Fπ

Tr
(
Φ3
)
=⇒ −

a
(
θ −

∑Nf

i=1 ϕi

)
√
3Fπ

π+π−η8 (42)

from which we have extracted the decay amplitude η8 → Π+Π−given by:

T
(
η → π+π−) = a

(
θ −

∑Nf

i=1 ϕi

)
√
3Fπ

=
2m2

π(θ)√
3Fπ

· µ2
1µ

2
2 sin θ

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(43)

where

m2
π(θ) =

µ2
1 cosϕ1 + µ2

2 cosϕ2

2
=

1

2

√
µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ (44)
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For small values of θ we get

T
(
η → π+π−) ∼ 2m2

π√
3Fπ

θ(√
m1

m2
+
√

m2

m1

)2 (45)

where mi is the quark mass related to the meson mass through Eq. (6). This
implies that

Γ
(
η → π+π−)) = θ2 · (135KeV) :

Γ (η → π+π−)

Γtot
= 159θ2 (46)

From experiments we get:

Γ (η → π+π−)

Γtot

< 3 · 10−4 (47)

that gives an upper limit to the value of θ < 10−3. We will get a much better
limit from the electric dipole moment of the neutron.

Notice that the decay amplitude of η → π+π−is zero for θ = 0, π if
µ2
1 ̸= µ2

2, while if µ2
1 = µ2

2 it is not vanishing anymore at θ = π. In the
previous analysis we have assumed that there are only two quark flavours. A
more realistic case is the one with three flavours. In this case one finds that

1. If |µ2
2 − µ2

1|µ2
3 > µ2

1µ
2
2 then CP is conserved at θ = π

2. If |µ2
2 − µ2

1|µ2
3 > µ2

1µ
2
2 then CP is violated at θ = π.

From the meson mass matrix one can easily get the mass of the pseudoscalar
mesons as a function of the angle θ. One gets:

m2
π0,π± =

µ2
1 cosϕ1 + µ2

2 cosϕ2

2
;m2

k± =
µ2
1 cosϕ1 + µ2

3 cosϕ3

2
(48)

and
m2

k0;k̄0 =
µ2
2 cosϕ1 + µ2

3 cosϕ3

2
(49)

They imply:

R(θ) ≡
m2

k0 −m2
k+ −m2

π0 +m2
π+

m2
π

=
µ2
2 cosϕ2 − µ2

1 cosϕ1

µ2
2 cosϕ2 + µ2

1 cosϕ1

=
(µ2

2 − µ2
1) (µ

2
2 + µ2

1)

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(50)
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where we have used Eqs. (32) and (33). In particular we get:

R(θ = 0) =
µ2
2 − µ2

1

µ2
2 + µ2

1

; R(θ = π) =
µ2
2 + µ2

1

µ2
2 − µ2

1

(51)

Experimentally R = 0.3 that is consistent with θ = 0. The ratio of masses
for the two lighest quarks is determined from the following relation:

m1

m2

=
µ2
1

µ2
2

=
2m2

π0 −m2
π+ +m2

k+ −m2
k0

m2
k0 −m2

k+ +m2
π+

= 0.56 (52)

For the sake of completeness we give also the ratio between the mass of the
strange and that of the down quarks:

m3

m2

=
µ2
3

µ2
2

=
m2

k0 −m2
π+ +m2

k+

m2
k0 −m2

k+ +m2
π+

= 20.1 (53)

4 Strong CP violating amplitudes with baryons
In order to compute the CP violating terms involving baryons it is convenient
to add to the effective Lagrangian terms involving baryons. The baryons
belong to an octet of SU(3) and are described by the following matrix:

Σ0
√
2
+ Λ√

6
Σ+ p

Σ− −Σ0
√
2
+ Λ√

6
n

Ξ− Ξ0 2 Λ√
6

 (54)

Remember that B is also a Dirac spinor. Under the chiral U(3) × U(3) the
baryons transform as follows:

R ≡ 1 + γ5
2

B → ARB† ; L ≡ 1− γ5
2

B → BLA† (55)

Remember that the meson fields transform as in Eq. (8). The Lagrangian
involving baryons can be written as follows:

Lbar = Tr
[
B̄iγµ∂µB

]
−

√
2α
Fπ

Tr
[
L̄URU + R̄U †LU †]+

+δTr
[
L̄URM + R̄U †LM †]+ γ Tr

[
L̄MRU + R̄M †LU †] (56)

As before we introduce

Uij = Vije
−iϕj ; Rij = eiϕiR′

ij ; L̄ij = eiϕiL̄′
ij (57)
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and the previous Lagrangian becomes:

Lbar = Tr
[
B̄′iγµ∂µB

′]− i

√
2α

Fπ

Tr
[
L̄′V R′V + R̄′V †L′V †]+

+δTr
[(
L̄′V R′ + R̄′V †L′)M(θ)

]
+ γ Tr

[
L̄′M(θ)R′V + R̄′M(θ)L′V †]+

+i

(
θ −

∑
i

ϕi

)[
δTr

(
L̄′V R′ − R̄′V †L′)+ γ Tr

(
L̄′R′V + R̄′L′V †)]

(58)
The Lagrangian has the same structure as the one before with in addition
a CP violating term. One can determine α, γ and δ in terms of the baryon
masses:

α =

√
2

Fπ

[
mΣ +

3µ2

2 (µ2
3 − µ2)

(mΣ −mΛ)

]
γ =

√
2

2Fπ (µ2
3 − µ2)

[
3

2
(mΣ −mΛ)− (mΞ −mN)

]
δ =

√
2

2Fπ (µ2
3 − µ2)

[
3

2
(mΣ −mΛ) + (mΞ −mN)

] (59)

It is easy to check that the baryon masses satisfy the Gell-Mann-Okubo mass
formula:

3mΛ +mΣ = 2 (mΞ +mN) (60)

From the previous Lagrangian one can extract the πN coupling constants:
√
2N̄ [iγ5gπNN + ḡπNN ] π

iτ iN (61)

that are given by:

FπgπNN = mN +
µ2

2 (µ2
3 − µ2)

[
3

2
(mΣ −mΛ)− (mΞ −mN)

]
(62)

that is the Goldeberger-Treiman relation apart from terms that vanish in the
chiral limit and

ḡπNN =
m1m2θ

2Fπ (m1 +m2) (m3 −m)

[
3

2
(mΣ −mΛ)− (mΞ −mN)

]
×
[
1 +

3m (mΣ −mΛ)

2 (m3 −m)mN

]
(63)
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Having computed ḡπNN we can use it to estimate the electric dipole moment
of the neutron that, if different from zero, implies a violation of CP . The
dominant contribution comes from the two diagrams discussed and computed
in Ref. [5] and one gets:

Dn =
1

4π2mN

· gπNN ḡπNN log
mN

mπ

= 3.6 · 10−16θcm (64)

in units where the electric charge e = 1. The experimental limit is:

Dn < 6 · 10−26 =⇒ θ < 10−9 (65)

5 Including the axion
From the analysis of the previous sections, we have seen that, if none of
the quark masses is exactly zero, the θ angle must be very small and is
actually consistent with zero. If instead one of the quark masses were zero,
CP violation would be absent thanks to an exact classical symmetry (the
chiral rotation of the massless quark) which allows to rotate θ away.

The Peccei-Quinn (PQ) solution of the strong-CP problem uses a similar
mechanism, but is based on extending QCD to include, in the matter sector,
some new degrees of freedom. The essential property of the PQ model is that
such an extension should provide a new classically exact, but anomalous and
spontaneously broken, U(1)PQ symmetry.

The low-energy effective action of such a theory will have to contain, be-
sides the usual QCD degrees of freedom, an extra would-be Goldstone boson
related to the spontaneously broken U(1)PQ symmetry. If we denote by aPQ

the coefficient of the U(1)PQ anomaly and by Fα the scale of its spontaneous
breaking (the analog of Fπ ), we can easily write down an effective action that
incorporates all the relevant (anomalous and non-anomalous) Ward identi-
ties. It consists of adding a couple of terms to the effective Lagrangian of
Eq. (15) to give (Ref. [9]):

L =
1

2
Tr
(
∂µU∂µU

†)+ 1

2
Tr
(
∂µN∂µN

†)+ Fπ

2
√
2
Tr
(
M
(
U + U †)) q2

aF 2
π

− θq+

+
i

2
q(x)

(
Tr
(
logU − logU †)+ aPQ

(
logN − logN †))

(66)
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where U

U(x) =
Fπ√
2
ei

√
2Φ(x)/Fπ ; N(x) =

Fα√
2
ei

√
2α(x)/Fα (67)

Notice that, following our assumptions, the only term that breaks U(1)PQ

is the one related to the anomaly. Under the axial U(1) and the additional
U(1)PQ defined by:

U → eiβU ; N → eiγN (68)

the effective Lagrangian transforms as follows:

δL = − (Nfβ + aPQγ) q(x) (69)

It is invariant if we choose Nfβ + aPQγ = 0. This is an anomaly-free U(1)
subgroup, whose spontaneous and explicit breaking (by quark masses) im-
plies a new, pseudo-Goldstone boson, the (Peccei-Quinn-Weinberg-Wilczek)
axion. Proceeding as in the previous sections

(
< Uij >= e−iϕiδijFπ/

√
2 and

⟨N⟩ = e−iϕFα/
√
2 ), we have to minimize the energy given by:

E =
F 2
π

2

a
2

θ −
Nf∑
i=1

ϕi − ϕ

2

−
Nf∑
i=1

µ2
i cosϕi

 (70)

obtaining

a

θ −
Nf∑
i=1

ϕi − ϕ

 = µ2
i sinϕi ; θ − ϕ−

Nf∑
i=1

ϕi = 0 (71)

that imply ϕi = 0 and θ − ϕ = 0. In this case there is no dependence on
the θ angle and no CP violation because θ − ϕ −

∑Nf

i=1 ϕi = 0 (in analogy,
again, with the case of a single massless quark). The mass matrix involving
the axion and the components of Φ belonging to the Cartan subalgebra of
U (Nf ) (Φij = viδij) is given by:

−1

2

 Nf∑
i=1

µ2
i v

2
i −

a

2

 Nf∑
i=1

vi + bα

2 (72)
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where b ≡ aPQ
Fπ

Fα
. The masses of the neutral mesons and of the axion are

given by setting to zero the determinant of the following matrix:
b2a− λ ba ba ba . . . ba

ba µ2
1 + a− λ a a . . . a

ba a µ2
2 + a− λ a . . . a

. . . . . . . . . . . . . . . . . .
ba a a a . . . µ2

Nf
+ a− λ

 (73)

that is by solving the equation:

λ

1
a
+

Nf∑
i=1

1

µ2
i − λ

 = b2 (74)

Since b << 1 the lowest eigenvalue, corresponding to the mass of the axion,
can be easily written down:

mα =
b2

1
a
+
∑Nf

i=1
1
µ2
i

∼ b2

1
µ2
1
+ 1

µ2
2

= 2m2
πb

2 · m1m2

(m1 +m2)
2 (75)

In order to be consistent with experiments we have to require that Fα ≥
109GeV corresponding to an axion mass mα < 0.01eV.
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