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Exercise 1: The oscillation phase

Departing from the amplitude for vacuum oscillations

Aνα→νβ =
∑
i

UβiU
∗
αie
−i(Eit−pix) (1)

derive the oscillation probability

Pνα→νβ =
∣∣Aνα→νβ ∣∣2 =

∑
jk

UαjU
∗
βjU

∗
αkUβk exp

[
−i

∆m2
kjx

2Eν

]
. (2)

Derive the oscillation phase φkj = ∆m2
kjx/(2Eν) in the case of two neutrinos only. Avoid

the assumption of equal energy or equal momentum for the neutrino mass states, but use
that neutrinos are ultra-relativistic.

Hint: use the definitions

∆X = X2 −X1 , ∆X2 = X2
2 −X2

1 , X̄ = (X1 +X2)/2 , (3)

which imply ∆X2 = 2X̄∆X, for X = E, p,m. Furthermore, use the average velocity
v = p̄/Ē and x ≈ vt.

Think about conceptual problems of this derivation. An overview over a consistent
calculation and references can be found in Ref. [1]

Exercise 2: Mass and mixing angle in constant matter

Consider two neutrino flavours and start from the effective Hamiltonian in matter

Hmat =
1

2E
U(θ) diag(m2

1,m
2
2)U

†(θ) + diag(V, 0) , U(θ) =

(
c s
−s c

)
(4)

with c = cos θ, s = sin θ and V =
√

2GFNe is the effective matter potential, where Ne is the
electron density along the neutrino path, which is assumed to be constant.

Show that

Hmat =
1

2E
U(θmat) diag(m2

1mat,m
2
2mat)U

†(θmat) (5)

with

sin2 2θmat =
sin2 2θ

sin2 2θ + (cos 2θ − A)2
(6)

∆m2
mat = ∆m2

√
sin2 2θ + (cos 2θ − A)2 (7)
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where A ≡ 2EV/∆m2, ∆m2 ≡ m2
2 −m2

1 and similar for ∆m2
mat.

Discuss the behaviour of m2
1mat, m

2
2mat, and sin2 2θmat as a function of A (including its

sign).

Long-baseline appearance experiments

The appearance probability in vaccum to second order in θ13 and ∆m2
21/|∆m2

31| is given by

Pµ→e ≈ s223 S
2 sin2 ∆ + sin 2θ23 α̃ S sin ∆ cos(∆± δCP) + c223 α̃

2 (8)

with

S ≡ sin 2θ13 , ∆ ≡ ∆m2
31L

4E
, α̃ ≡ sin 2θ12

∆m2
21L

4E
, (9)

and s23 ≡ sin θ23, c23 ≡ cos θ23. For neutrinos (anti-neutrinos) holds the upper (lower) sign,
for e → µ transitions exchange δCP → −δCP.1 The neutrino mass ordering is determined
by the sign of ∆. A discussion of LBL oscillation probabilities can be found for example in
Ref. [2], see also Ref. [3].

Exercise 3: The α̃2-term

Consider an experiment at the first oscillation maximum and estimate the size of the α̃2

term in the oscillation probability (third term in Eq. 8). Give the range for sin2 2θ13, where
this term can be neglected. What does this imply, given the value of sin2 2θ13 as determined
by reactor experiments?

Exercise 4: sin2 2θ13-determination in appearance experiments

Consider an experiment at the first oscillation maximum which measures some value for
Pµ→e. Suppose this is just a counting experiment and ignore the energy dependence of the
signal. To a good approximation this applies to current data from the T2K experiment.2

a) Using Eq. 8, estimate the shape of the allowed region for sin2 2θ13 as a function of δCP.

b) How does this shape depend on whether neutrinos or anti-neutrinos are used?

c) Discuss the dependence of the region on θ23.

Hint: use the measured value of sin2 2θ13 from reactor experiments and the results of exercise
3 to motivate whether the α̃2-term in Eq. 8 has to be considered or not.

1Remember: in vacuum the CP-conjugation (exchaning ν with ν) is equivalent to the T-conjugation
(exchaning initial and final neutrino flavours), as a consequence of CPT invariance.

2For the NOvA experiment, similar considerations apply, but in this case the matter effect is larger and
leads to modifications.
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Exercise 5: The sign(∆m2
31)-degeneracy

a) Show that in vacuum the relation

Pµ→e(∆m
2
31, S, δCP) = Pµ→e(−∆m2

31, S, δ
′
CP) (10)

can be fulfilled simultaneously for neutrinos and anti-neutrinos, and independent of
the neutrino energy. Determine δ′CP.

b) Consider the case of small matter effect. Without performing any calculations, give
an argument why the leading order matter effect correction to Eq. 8 cannot break the
sign(∆m2

31)-degeneracy and similar to Eq. 10, a relation

Pµ→e(∆m
2
31, S, δCP) = Pµ→e(−∆m2

31, S
′, δ′CP) (11)

still can be satisfied for neutrinos and anti-neutrinos simultaneously.

The degeneracy discussed in this exercise makes it hard to determine the neutrino mass
ordering (normal versus inverted ordering) and is the reason why the ordering is not deter-
mined by present data. The neutrino mass ordering degeneracy was first noted in Ref. [4], a
discussion with some analytical considerations can be found in Ref. [5]. The classical paper
on the eight-fold degeneracy (including the intrinsic, sign(∆m2

31), and octant degeneracies)
is Ref. [6].

Exercise 6: Majorana mass term

The charge conjugated field is defined as

ψc ≡ Cψ
T

= Cγ0ψ
∗ (12)

where the charge conjugation matrix C has the following properties:

C† = C−1 , CT = −C , CγTµC
−1 = −γµ . (13)

a) Show the quivalence of the following notations for the Majorana mass term

m

2
ψTLC

−1ψL + h.c. = −m
2

(ψL)cψL + h.c. = −m
2
ψψ with ψ = ψL + (ψL)c . (14)

b) Show that a Majorana mass matrix has to be symmetric. (Hint: use the anti-commutation
rule for fermion fields.)

c) Consider a Lagrangian with one left-handed and one right-handed fermion with mass
terms of the following form:

LM = −mDψLψR +
mL

2
ψTLC

−1ψL +
mR

2
ψTRC

−1ψR . (15)

Show that this can be cast into the form of a Majorana mass term in the following
way:

LM =
1

2
ψTC−1

(
mL mD

mD mR

)
ψ + h.c. with ψ =

(
ψL

(ψR)c

)
. (16)
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d) Assume that mD,mL,mR are real (this corresponds to CP conservation). Diagonalize
the mass matrix in eq. 16. What are the mass eigenvalues and the mass eigenfields?

e) Consider the two limiting cases (i) mL,mR � mD and (ii) mL � mD � mR. In both
cases discuss the mass eigenvalues and the mass eigenfields. Give an interpretation of
your results.

A discussion along these lines can be found in [7].
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Solutions

Solution 1: The oscillation phase

From squaring the amplitude in the case of two neutrinos the oscillation phase is obtained
as

φ = (E2 − E1)t− (p2 − p1)x with E2
i = p2i +m2

i (17)

Then we write

φ = ∆Et− ∆p2

2p̄
x = ∆Et− ∆E2 −∆m2

2p̄
x (18)

= ∆Et− 2Ē

2p̄
∆Ex+

∆m2

2p̄
x (19)

With the “average velocity” of the neutrino v = p̄/Ē and x ≈ vt one gets

φ ≈ ∆m2

2p̄
x ≈ ∆m2

2Ē
x (20)

In the last step v ≈ 1 has been used.
The main problem with this derivation is setting x ≈ vt. Note that we are using a plane

wave for the neutrinos, which is delocalized in space and time. A consistent treatment either
requires the introduction of wave packets or a QFT calculation, see e.g. [1].

Solution 2: Mass and mixing angle in constant matter

The Hamiltonian in matter eq. 4 takes the form

Hmat =
1

2E

(
c2m2

1 + s2m2
2 + V sc(m2

2 −m2
1)

sc(m2
2 −m2

1) s2m2
1 + c2m2

2

)
(21)

The eigenvalues of this matrix are

λ1,2 =
m2

1 +m2
2

4E
+
V

2
± ∆m2

4E

√
sin2 2θ + (cos 2θ − A)2 , (22)

which leads to eq. 7 by ∆m2
mat = 2E(λ2 − λ1).

The expression for the mixing angle in matter, Eq. 6, is most easily obtained by calcu-
lating U †(θmat)HmatU(θmat) and demanding that the off-diagonal element of this matrix is
zero. This gives

tan 2θmat =
sin 2θ

cos 2θ − A
, (23)

which implies Eq. 6.
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Solution 3: The α̃2-term

At the first oscillation maximum we have

∆ ≡ ∆m2
31L

4E
=
π

2
⇒ L

4E
=
π

2

1

∆m2
31

(24)

and

α̃ ≡ sin 2θ12
∆m2

21L

4E
= sin 2θ12

π

2

∆m2
21

∆m2
31

≈ 0.046 . (25)

Hence, α̃2 ≈ 2.1 × 10−3, and for sin2 2θ13 & 0.01 this term can be neglected. From reactor
experiments we have sin2 2θ13 ' 0.1, so it is save to neglect the α̃2 term.

Solution 4: sin2 2θ13-determination in appearance experiments

Neglecting the α̃2 term and using ∆ = π/2, Eq. 8 becomes

Pµ→e ≡ P ≈ s223 S
2 ∓ sin 2θ23 α̃ S sin δCP . (26)

Solving for S yields

S ≈ ± cot θ23 α̃ sin δCP +

√
P

s223
, (27)

where again α̃2 terms have been neglected wrt P and the sign in front of the square-root has
been chosen “+”, in order to keep S positive. Hence,

S2 ≈ 1

s223

(
P ± 2

√
P c23 α̃ sin δCP

)
. (28)

a) Eq. 28 shows that the region of S2 follows the shape of a sin function in δCP.

b) For neutrinos (anti-neutrinos) the region goes as sin δCP (− sin δCP).

c) The region in Eq. 28 is a linear function in 1/s223, the amplitude of the sin δCP-term is
proportional to c23. Hence the region in S2 shifts and the amplitude of the δCP term
changes as θ23 varies.

Remark: Note that Eq. 28 is not always positive. In order to have a positive definite
expression all higher order terms have to be kept.

Solution 5: The sign(∆m2
31)-degeneracy

a) Using Eq. 8, Eq. 10 leads to the condition

cos(∆± δCP) = − cos(−∆± δ′CP) (29)

= − cos(∆∓ δ′CP) (30)
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Writing δ′CP = x− δCP, one obtains

cos(∆± δCP) = − cos(−∆± δCP ∓ x) (31)

= − cos(∆± δCP) cosx∓ sin(∆± δCP) sinx (32)

This relation is fulfilled for x = π and hence δ′CP = π − δCP. Therefore, Eq. 10 holds
for neutrinos and anti-neutrinos simultaneously, since Eq. 32 is fulfilled for both signs.

b) If the matter effect A is small, it will introduce a small perturbation to the solution
found in case of vacuum:

S ′ = S + εS , δ′CP = π − δCP + εδ . (33)

For neutrinos and anti-neutrinos, Eq. 11 is a system of two equations, which can be
linearized in the small quantities εS, εδ, A. A linear system of two equations for two
variables (εS and εδ) has in general a unique solution, and hence the first order matter
effect cannot break the degeneracy.3 In order to resolve it, one has to enter the regime
of strong matter effect, i.e., close to the resonance.

Solution 6: Majorana mass term

Solutions to a), b), c) follow from eqs. 12 and 13.

d) A real symmetric matrix M can be diagonalized by

m̂ ≡ diag(m1,m2) = OMOT with O =

(
c s
−s c

)
. (34)

The eigenvalues are given by

m1,2 =
1

2

[
mL +mR ∓

√
(mL −mR)2 + 4m2

D

]
, (35)

which are real but may be negative. Therefore, the physical masses are |m1| and |m2|,
and we define ρi as the sign of mi such that ρimi = |mi|, and ρi is called the CP parity
of the Majorana mass fiel ψi. Eq. 16 can now be written as

LM =
1

2
ψTC−1Mψ =

1

2
ψTOTC−1m̂Oψ =

1

2
ψ̂TC−1|m̂|ψ̂ (36)

with the mass eigen fields defined by

ψ̂ ≡
(
ψ1

ψ2

)
≡ diag(

√
ρ1,
√
ρ2)Oψ . (37)

The mixing angle in O is defined by

tan 2θ =
2mD

mR −mL

. (38)

3An explicit calculation can be found in Ref. [5].
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e)(i) The limit mL,mR � mD. From the above results follows

m1,2 ≈ ∓mD +
mL +mR

2
and θ → π/4 . (39)

In the limit of mL = mR = 0 we recover a Dirac particle. It follows that a Dirac field
can be represented by two degenerate Majorana fields with mass mD and oposite CP
parity:

ψ1 =
i√
2

(ψL + (ψR)c) , ψ2 =
1√
2

(−ψL + (ψR)c) . (40)

The case of small but non-zero mL,mR is called pseudo-Dirac particle.

e)(ii) In the limit mL � mD � mR we obtain

m1 ≈ mL −
m2
D

mR

, m2 ≈ mR , θ ≈ mD

mR

. (41)

Setting mL ≈ 0 and assuming mR > 0 we have

ψ1 ≈ i

(
ψL +

mD

mR

(ψR)c
)
, ψ2 ≈ (ψR)c − mD

mR

ψL . (42)

Hence, there is a light (heavy) mass state with mass m2
D/mR (mR), and the correspond-

ing field coincides with ψL (ψcR) up to order mD/mR. This is the Seesaw mechanism.
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