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Back to the QCD beta-function

Perturbative expansion of the beta-function: 
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• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to five loops, but only first two 

coefficients are independent of the renormalization scheme
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Exercise: proof the above statement [hint: use the fact that at O(αs) the 
coupling in two different schemes is related by a finite change]



Active flavours & running coupling

The active field content of a theory modifies the running of the couplings  

Constrain New Physics by measuring the running at high scales? 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 
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⌅µ2�s = �s(µ2)
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Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

Scale dependence of A enters through the running of the coupling: 
knowledge of                    allows one to compute the variation of A with 
Q given the beta-function 

A(1,�s(Q2))
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Measurements of the running coupling

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

World average
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Measurements of the running coupling
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Uncertainty on 𝛼s (and PDF) is in several cases the dominant source of 
uncertainty to provide precise theory predictions 

Procedure to compute worlds average in PDG: 

• subdivide observables in categories

• provide an average for each category 

• provide an average of all categories               
⇒ the world average of 𝛼s

Many ambiguities, choices (e.g. treatment of correlations etc.), subtle aspects involved… 



Measurements of the running coupling
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Recap
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The formulation of QCD as a non-abelian Quantum Field Theory allows to 

• Describe the hadron spectrum 

• Explain experimentally the observed symmetries in the strong iteration 

• No mixing between strong and weak interactions 

• Obtain a field-theoretical description of the strong force, opening the 

path to a unified formalism of all fundamental interactions

We have then discussed the UV behaviour of QCD 

• discussed renormalisation of UV divergences

• introduced the running of the coupling constant and the beta-function

• discussed measurements of the coupling constant 

As we will see, the perturbative description of QCD is very predictive 
(while we understand much less the regime governed by strong dynamics)



In the following we will concentrate on the perturbative regime of QCD. 

In particular, we’ll discuss generic properties of QCD amplitudes 

• Soft-collinear divergences and how they are dealt with

• Kinoshita-Lee-Nauenberg theorem 

• The concept of infrared finiteness  

• Sterman Weinberg jets 

Next
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Let’s consider again the R-ratio

The soft approximation
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e2
q

Leading order result 



Let’s consider again the R-ratio

The soft approximation
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We have seen a good agreement between 
the leading order result and data, but 
there are various unanswered questions 

• Since free quarks do not exist, why is 
the leading order result so good? 

• In particular, why can one identify the 
cross-sections for the production of 
quarks to that of hadrons? 

• Can one probe QCD further by 
testing more exclusive observables? 



Quark-hadron duality 
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The reliability of parton-level calculations to describe hadron-level 
observables is known as quark-hadron duality.  

This duality relies on the time separation between a hard scattering (partons 
are produced) and a soft process (quarks hadronize). Since the two processes 
happen at very different time-scales there is not quantum interference and 
the soft process does not alter the hard momentum flow “too much”

With this in mind, let’s apply the parton description and look for a better 
approximation of R, i.e. let’s compute QCD corrections, at least in some 
approximation  



QCD corrections are only in the final state, i.e. corrections to �� � qq̄

At leading order: 

Mµ
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Consider the soft approximation: k � p1, p2 ⇒	factorization of 
soft part (crucial 
for resummed 
calculations)
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qq̄g = ū(p1) ((�ie�µ)(�igst

a)v(p2))
�

p1⇥

p1k
� p2⇥

p2k

⇥

13

Emit one gluon:
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Soft divergences

The squared amplitude becomes
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The above is a Lorentz-invariant amplitude. Go to the centre-of-mass frame: 



Soft divergences

The squared amplitude becomes
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Including phase space, in this frame, in terms of energy and angle of the 
gluon one contains  
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d⌅qq̄g = d⌅qq̄
2�sCF

⇤

d⌃
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sin ⇥

d⇧

2⇤

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence
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But the full O(αs) correction to R is finite, because one must include a 
virtual correction which cancels the divergence of the real radiation 

d⌅qq̄,v ⇥ �d⌅qq̄
2�sCF
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NB: here we kept only soft terms, if we do the full calculation one gets a 
finite correction of αs/π 



Soft & collinear divergences 

ω →0 soft divergence: the four-momentum of the emitted particle 
approaches zero, typical of gauge theories, even if matter (radiating 
particle) is massive 

θ → 0 collinear divergence: particle emitted collinear to emitter. 
Divergence present only if all particles involved are massless
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NB: the appearance of soft and collinear divergences discussed in the 
specific contect of e+e- → qq are a general property of QCD  



Cancellation of IR divergences in R is not a miracle. It follows directly from 
unitarity provided the measurement is inclusive enough 

Infrared finiteness

In the infrared region real and virtual are kinematically equivalent but for a 
(-1) from unitarity

Compute and regulate real and virtual separately, until a cancelation of 
divergences is achieved 



Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless 
theory cancel out after summing over degenerate (initial and final) states 

KLN Theorem

Physically a hard parton can not be distinguished from a hard parton plus a 
soft gluon or from two collinear partons with the same energy. They are 
degenerate states. 
Hence, one needs to add them to get a physically sound observable



Infrared safety (= finiteness)

So, the R-ratio is an infrared safe quantity. 

• are there other IR-safe quantities? 
• what property of R guarantees its IR-safety? 

In perturbation theory one can compute only IR-safe quantities, otherwise 
get infinities, which can not be renormalized away (why not…?) 

So, the natural questions are: 
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Sterman-Weinberg jets

First formulation of cross-sections which are finite in perturbation theory 
and describe the hadronic final state

Introduce two parameters ε and δ: 
a pair of Sterman-Weinberg jets are 
two cones of opening angle δ that 
contain all the energy of the event 
excluding at most a fraction ε

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite

in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as

follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters ε
and δ, in the following way. A hadronic event in e+e− annihilation, with centre-of-mass energy E,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angle δ that
contain more than a fraction 1 − ε of the total energy E. In other words εE is the maximum energy

allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in

the approximation introduced in the previous chapter, is infrared finite. The various contributions to the

cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluon l0 is limited
by l0 < εE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, when l0 > εE, when the emission angle with respect to the quark (or
antiquark) is less than δ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)

Virtual = −σ0
4αSCF

2π
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θ=0
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1 − cos2 θ
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Real (c) = σ0
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dl0
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d cos θ

1 − cos2 θ
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Real (d) = σ0
4αSCF
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∫ E
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dl0
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[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]
. (81)
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions
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Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 
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a) We have a Born term 𝜎B which is completely within the Sterman-
Weinberg jet definition: since there are only two quarks they keep all the 
energy inside the cones  



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 
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b) We have a virtual term which is also completely within the Sterman-
Weinberg jet definition (only two quarks)  



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 
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c) We have a real term: the emitted gluon can be emitted also outside the 
jet provided it carries only little energy, or.. 



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 
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d) .. or it can carry a considerable fraction of energy provided it is emitted 
inside the cones 



Adding all the contributions, the Sterman-Weinberg jet cross-section up to 
O(αs) in the soft-collinear approximation is given by 

Sterman-Weinberg jets

⇧1 = ⇧0

�
1 +

2�sCF

⌅
ln ⇤ ln ⇥2

⇥

Effective expansion 
parameter in QCD is 
often αsCF/π not αs

αs-expansion enhanced by 
a double log: left-over from 
real-virtual cancellation

• if more gluons are emitted, one gets for each gluon
- a power of αsCF/π
- a soft logarithm lnε
- a collinear logarithm lnδ

• if ε and/or δ become too small the above result diverges
• if the logs are large, fixed order meaningless, one needs to resum large 

infrared and collinear logarithms to all orders in the coupling constant
26



• Jets were discovered in the late 70s in electron-position collision 
• They provided the first direct evidence for the gluon (we’ll discuss indirect 

evidence later) 
• In the 80s and 90s jets provided many other stringent tests of QCD at LEP
• Today jets are one of the powerful tools to look for New Physics at the 

LHC 

Jets
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High energy di-jet event at CMSGluon discovery: 3jet event in e+e-



An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn)� On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings
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‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 
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Infrared safe ? 

NO
NO
YES
NO

DEPENDS

Only for infrared safe quantities is a comparison of data and theory well 
defined to all orders in perturbation theory 



Other IR safe quantities
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Event shapes: describe the shape 
of the event, but are  largely 
insensitive to soft and collinear 
branching

• widely used to measure 𝛼s

• measure color factors
• test QCD
• learn about non-perturbative 

physics   



Example: spin of the gluon
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Example: non-abelian nature of QCD
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Example: fits of colour fators
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Fits of colour factors from 4-jet 
rates and event shapes  

Well compatible with QCD:

CA = 2.89± 0.21

CF = 1.30± 0.09

CF =
4
3

CA = 3



Recap
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Brief recap on the infrared behaviour of QCD  
• we have seen that soft and collinear divergences arise universally in 

QCD calculations 
• these divergences cancel in e+e- observables in inclusive observables 

(KLN theorem)
• we have performed a first genuine QCD calculation: the cross-section 

for Sterman Weinberg jets in e+e- collisions 
• perturbative QCD can be used to compute jet-cross section and other 

infrared-safe event shape variables
• comparison of theory and calculations provide stringent tests of QCD  



Partons in the initial state

• We talked a lot about final state QCD effects

• This is the only thing to worry about at e+e- colliders (LEP)

• Hera/Tevatron/LHC involve protons in the initial state

• Proton are made of QCD constituents

Next we will focus mainly on aspects related to initial state effects
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Phenomenology: lecture 4 (p. 81)

PDF introduction Factorization & parton distributions

Recall Higgs production in
hadron-hadron collisions:

x
2 p
2

p1 p2

x 1
p 1

σ

Z H

σ =

∫

dx1fq/p(x1, µ
2)

∫

dx2fq̄/p̄(x2, µ
2) σ̂(x1p1, x2p2, µ

2) , ŝ = x1x2s

Total X-section is factorized into a ‘hard part’ σ̂(x1p1, x2p2, µ2) and
‘normalization’ from parton distribution functions (PDF).

Measure total cross section ↔ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

Picture seems intuitive, but
how can we determine the PDFs? NB: non-perturbative
does picture really stand up to QCD corrections?

The parton model

Basic idea of the parton model: intuitive picture where in a high transverse 
momentum scattering partons behave as quasi free in the collision 
⇒	cross section is the incoherent sum of all partonic cross-sections 

            : parton distribution function (PDF) is the probability to find parton 
i in hadron j with a fraction xi of the longitudinal momentum (transverse 
momentum neglected), extracted from data

            : partonic cross-section for a given scattering process, computed in 
perturbative QCD
�̂(x1x2s)

NB: This formula is wrong/incomplete (see later)

� =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)�̂(x1x2s) ŝ = x1x2s

f
(Pj)
i (xi)
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Sum rules
Momentum sum rule: conservation of incoming total momentum

How can parton densities be extracted from data? 
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� 1

0
dx

�

i

xf (p)
i (x) = 1

In the proton: u, d valence quarks, all other quarks are called sea-quarks 

Conservation of flavour: e.g. for a proton
� 1

0
dx

�
f (p)

u (x)� f (p)
ū (x)

�
= 2

� 1

0
dx

�
f (p)

d (x)� f (p)
d̄

(x)
�

= 1

� 1

0
dx

�
f (p)

s (x)� f (p)
s̄ (x)

�
= 0



Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton
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Deep inelastic scattering

Protons made up of point-like quarks. 
Different momentum scales involved: 

• hard photon virtuality (sets the resolution 
scale) Q 

• hard photon-quark interaction Q
• soft interaction between partons in the 

proton mp ≪ Q

39

During the hard interaction, partons do not have time to interact among 
them, they behave as if they were free 

⇒	approximate as incoherent scattering on single partons 

e+

qk

k�

xp
p

proton



Deep inelastic scattering

Kinematics: 
Q2 = �q2 s = (k + p)2 xBj =

Q2

2p · q
y =

p · q

k · p

Partonic cross section: 

(apply QED Feynman rules and 

add phase space)

d⇤̂

dŷ
= q2

l
ŝ

Q4
2 ⇥ �em

�
1 + (1� ŷ)2

⇥

e+

qk

k�

xp
p

proton
Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q �Q2 = 0

� x = xBj
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Q2 is the virtuality at 
which one probes the 

proton (resolution scale) 

Hence at leading order, the experimentally accessible xBj coincides with the 
momentum fraction carried by the quark in the proton 



Exercise: show that in the CM frame of the electron-quark system y is given 

by                      , with      the scattering angle of the electron in this frame  

Exercise: 

- show that the two particle phase space is

- show that the squared matrix element is 

- show that the flux factor is

Hence derive that 

d⇤̂

dŷ
= q2

l
ŝ

Q4
2 ⇥ �em

�
1 + (1� ŷ)2

⇥

16⇥�q2
l

Q4
ŝxpk

�
1 + (1� y)2

⇥

1
4xpk

d⇥

16�

(1� cos �el)/2 �el
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Deep inelastic scattering

Hadronic cross section (factorization):
d�

dy
=

⇥
dx

�

l

f (p)
l (x)

d�̂

dŷ

1. at fixed xBj and y the cross-section scales with s 

2. the y-dependence of the cross-section is fully predicted and is typical of 
vector interaction with fermions ⇒ Callan-Gross relation

3. can access (sums of) parton distribution functions

4. Bjorken scaling: pdfs depend on x and not on Q2 (violated by logarithmic 
radiative corrections, see later) 

Using x = xBJ

d�

dy dxBj
=

�

l

f (p)
l (x)

d�̂

dŷ

=
2⇥ �2

emsxBj

Q4

�
1 + (1� y)2

⇥ ⇤

l

q2
l f (p)

l (xBj)

e+

qk

k�

xp
p

proton
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The structure function F2

F2 is called structure function (describes structure/constituents of nucleus)

For electron scattering on proton 

F2(x) = x

�
4
9
u(x) +

1
9
d(x)

⇥

NB: use perturbative language of quarks and gluons despite the fact that 

parton distribution are non-perturbative

d⇤

dydx
=

2⇥�2
ems

Q4

�
1 + (1� y2

⇥
F2(x) F2(x) =

⇤

l

xq2
l f (p)

l (x)

43

Bjorken scaling: the fact the structure functions are independent of Q is a 
direct evidence for the existence of point-like quarks in the proton 
(violated by logarithmic corrections) 



The structure function F2

F2 is called structure function (describes structure/constituents of nucleus)

For electron scattering on proton 

F2(x) = x

�
4
9
u(x) +

1
9
d(x)

⇥

NB: use perturbative language of quarks and gluons despite the fact that 

parton distribution are non-perturbative

Question: F2 gives only a linear combination of u and d. How can they be 

extracted separately?

d⇤

dydx
=

2⇥�2
ems

Q4

�
1 + (1� y2

⇥
F2(x) F2(x) =

⇤

l

xq2
l f (p)

l (x)
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Isospin

For electron scattering on a proton 

F p
2 (x) = x

�
4
9
up(x) +

1
9
dp(x)

⇥

For electron scattering on a neutron 

Fn
2 (x) = x

�
1
9
dn(x) +

4
9
un(x)

⇥
= x

�
4
9
dp(x) +

1
9
up(x)

⇥

F2 and F2 allow determination of up and dp separatelyn p

Neutron is like a proton with u & d exchanged

45

NB: experimentally get F2 from deuteron: 
n

F d
2 (x) = F p

2 (x) + Fn
2 (x)



Sea quark distributions

An infinite number of pairs can be created as long as they have very low 

momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
⇤ 1

0
dx (up(x)� ūp(x)) = 2

⇤ 1

0
dx

�
dp(x)� d̄p(x)

⇥
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created

Photons interact in the same way with u(d) and u(d) 

How can one measure the difference? 

Question:  What interacts differently with particle 

and antiparticle?      
proton

�µ

µ�

W+

 W+/W-  from neutrino scattering
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Check of the momentum sum rule

uv 0,267

dv 0,111

us 0,066

ds 0,053

ss 0,033

cc 0,016

total 0,546

➟ half of the longitudinal 
momentum carried by gluons

γ/W+/- don’t interact with gluons
How can one measure gluon parton densities?
We need to discuss radiative effects first

47

� 1

0
dx

�

i

xf (p)
i (x) = 1



Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one

zp̂
(1� z)p̂

p̂
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Adding real and virtual contributions, the partonic cross-section reads

Partial cancellation between real (positive), virtual (negative), but real 

gluon changes the energy entering the scattering, the virtual does not 

�(1) =
CF �s

2�

�
dz

dk2
�

k2
�

1 + z2

1� z

�
�(0)(zp̂)� �(0)(p̂)

�



Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	naive parton model does not survive radiative corrections 

Similarly to what is done when renormalizing UV divergences, collinear 

divergences from initial state emissions are absorbed into parton 

distribution functions 
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P (z) = CF
1 + z2

1� z
�(1) =

�s
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�
dz

� Q2
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The plus prescription

Partonic cross-section: 

⇤(1) =
CF �s

2⇥

⇤ Q2

�2

dk2
�

k2
�

⇤ 1

0
dz P (z)

�
⇤(0)(zp̂)� ⇤(0)(p̂)

⇥�s

50

Plus prescription makes the universal cancelation of singularities explicit
� 1

0
dzf+(z)g(z) �

� 1

0
f(z) (g(z)� g(1))

The partonic cross section becomes

Collinear singularities still there, but they factorize.

P (z) = CF

�
1 + z2

1� z

⇥
�(1) =

�s

2�

�
dz

� Q2

�2

dk2
�

k2
�

P+(z)�(0)(zp̂) ,



Factorization scale

Schematically use 

So we define

⌅̂(p, µF ) =
�

1 +
�s

2⇤
ln

Q2

µ2
F

P (0)
qq

⇥
⌅(0)(p)fq(x, µF ) = fq(x)�

�
1 +

�s

2⌅
ln

µ2
F

⇥2
P (0)

qq

⇥

• universality, i.e. the PDF redefinition does not depend on the process

• choice of μF ∼ Q avoids large logarithms in partonic cross-sections

• PDFs and hard cross-sections don’t evolve independently

• the factorization scale acts as a cut-off, it allows to move the divergent 

contribution into non-perturbative parton distribution functions 

NB:

⇧ = ⇧(0) + ⇧(1) =
�

1 +
�s

2⌅
ln

µ2
F

⇥2
P+

⇥
�

�
1 +

�s

2⌅
ln

Q2

µ2
F

P+

⇥
⇧(0)
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Improved parton model

⇥ =
�

dx1dx2f
(P1)
1 (x1, µ

2)f (P2)
2 (x2, µ

2)⇥̂(x1x2s, µ
2)

� =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)�̂(x1x2s) ŝ = x1x2s

Naive parton model:

After radiative corrections:
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• With initial state parton collinear singularities don’t cancel

• Initial state emissions with k⊥ below a given scale are included in PDFs

• This procedure introduces a scale μF, the so-called factorization scale 

which factorizes the low energy (non-perturbative) dynamics from the 

perturbative hard cross-section

• As for the renormalization scale, the dependence of cross-sections on 

μF is due to the fact that the perturbative expansion has been truncated

• The dependence on μF becomes milder when including higher orders

• The redefinition of PDFs is universal and process-independent 

Intermediate recap
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⇥ =
�

dx1dx2f
(P1)
1 (x1, µ

2)f (P2)
2 (x2, µ

2)⇥̂(x1x2s, µ
2)

⇥ =
�

dxf (P )(x, µ2)⇥̂(xs, µ2)One incoming hard parton:

Two incoming hard partons:



Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 

x’
x = z x’

(1-z)x’

x

(1-z)x’

z x

The plus prescription
� 1

0
dzf+(z)g(z) ⇥

� 1

0
dzf(z) (g(z)� g(1))

µ2 ⌃f(z, µ2)
⌃µ2

=
� 1

0
dx�

� 1

x
dz

�s

2⌅
P̂ (z)f(x�, µ2)⇥(zx� � x)�

� 1

0
dz

�s

2⌅
P̂ (z)f(x, µ2)

=
⇧ 1

x

dz

z

�s

2⇤
P̂ (z)f

⇤x

z
, µ2

⌅
�

⇧ 1

0
dz

�s

2⇤
P̂ (z)f

�
x, µ2

⇥

=
⇤ 1

x

dz

z

�s

2⇤
P (z)f

�x

z
, µ2

⇥
+

x
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DGLAP equation

µ2 ⇧f(z, µ2)
⇧µ2

=
⇤ 1

x

dz

z

�s

2⇤
P (z)f

�x

z
, µ2

⇥

Master equation of QCD: we can not compute parton densities, but we 
can predict how they evolve from one scale to another

Universality of splitting functions: we can measure pdfs in one process 
and use them as an input for another process

 Altarelli, Parisi; Gribov-Lipatov; Dokshitzer ’77 

x
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Conventions for splitting functions

Accounting for the different species of partons the DGLAP equations 

become:

There are various partons types. Standard notation:

This is a system of coupled integro/differential equations

The above convolution in compact notation: 

µ2 ⇤fi(z, µ2)
⇤µ2

=
⇤

j

⌅ 1

x

dz

z
Pij(z)fj

�x

z
, µ2

⇥

µ2 ⇤fi(z, µ2)
⇤µ2

=
�

j

Pij � fj(µ2)

a
c

b z x

(1-z) x

x
Pba(z)

x

x



Properties of splitting functions

Pqg anf Pgg symmetric under z (1-z)
Pqq and Pgg divergence for z=1 (soft gluon)
Pgq and Pgg divergenge for z=0 (soft gluon)
Pqg no soft divergence for gluon splitting to quarks 

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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➠ gluon PDF grows at small x

P (0)
qq = P (0)

q̄q̄ = CF

�
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P (0)
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P (0)
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⇤
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+
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History of splitting functions

Pab : Altarelly, Parisi; Gribov-Lipatov; Dokshitzer (1977) 

Pab : Curci, Furmanski, Petronzio (1980) 

Pab : Moch, Vermaseren,Vogt (2004) 

☛ Essential input for NNLO pdfs determination (state of the art today)

(2)

(1)

(0)



Evolution
So, in perturbative QCD we can not predict values for 

• the coupling

• the masses

• the parton densities

• ... 
What we can predict is the evolution with the Q2 of those quantities.
These quantities must be extracted at some scale from data.

• not only is the coupling scale-dependent, but partons have a scale 
dependent sub-structure

• we started with the question of how one can access the gluon pdf:       
Because of the DGLAP evolution, we can access the gluon pdf indirectly, 
through the way it changes the evolution of quark pdfs. Today also direct 
measurements using Tevatron jet data and LHC tt and jet data  

u

u

d u

u

g

g

d
u

dg
s

u g
s

u
u

-

-

increase Q2 increase Q2
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Recap.

Parton model: incoherent sum of all partonic cross-sections 

Sum rules (momentum, charge, flavor conservation)

Determination of parton densities (electron & neutrino scattering)

Radiative corrections: failure of parton model 

Factorization of initial state divergences into scale dependent parton 
densities

DGLAP evolution of parton densities ⇒	measure gluon PDF

While PDFs loose the naive probabilistic interpretation basic 
conservation principle still hold (momentum sum rules, energy, flavour 
conservation) 


