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DGLAP Evolution
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Measure PDFs at 10 GeV Evolve in Q2 and make LHC predictions

The DGLAP evolution is a key to precision LHC phenomenology: it 
allows to measure PDFs at some scale (say in DIS) and evolve upwards 
to make LHC (7, 8, 13, 14, 33, 100.... TeV) predictions 



Typical features of PDFs
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• vanish at x → 1
• valence quarks peak at x ≃1/3 
• gluon and sea distribution rise for x → 0 (region dominated by gluons)



Progress in PDFs
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PDFs are an essential ingredient for the LHC program. 

Recent progress includes

• better assessment of uncertainties (e.g. different groups now agree at 
the 1σ level where data is available)

• exploit wealth of new information from LHC Run I, II and III 
measurements

• progress in tools and methods (e.g. Neural Network PDFs) to include 
these data in the fits

• inclusion of PDFs for photons, leptons  



Progress in PDFs
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Issues under discussion

• which data to include in the fits (and how to deal with incompatible data)

• enhance relevance of some data (reduce effect of inconsistent data sets)

• heavy-quark treatment and masses 

• parametrization for PDFs (theoretical bias, reduced in Neural Network 
PDFs)

• include theoretical improvement (e.g. resummation) for some observables 

• unphysical behaviour close to x=0 and x=1

• meaning of uncertainties

• 𝛼s as external input or fitted with PDFs

• how not to “fit away” New Physics effects in PDFs



Summary
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• In the QCD parton model, hadrons are treated as bound states of quasi-
fee point-like quarks is very successful to explain DIS measurements 

• In this model, the probability to find a parton with a given momentum 
fraction is given by the (scale independent) parton distribution function 

• The model breaks down once one includes initial state radiation since 
collinear divergences do not cancel

• This leads to scale dependent parton distribution functions 

• The dependence is governed by the DGLAP evolution equations 

• QCD factorisation means that PDFs are universal and process-
independent quantities: they can be measured in some process, at some 
scale, and use in a different process at a different scale

• PDFs are today determined by global fits to data   



Perturbative calculations
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• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• In the following will discuss these issues through examples

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

� � A + B�s + C�2
s + D�3

s + . . .

LO NLO NNLO NNNLO



Hard cross section 
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Born level cross section straightforward in principle 

�LO =
�

m
d�m|M(0)({pi})|2S({pi})

m-particle phase space 
(e.g. Vegas)

Matrix element measurement function 
(constraint on phase space)  



Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Diagrams for gluon amplitudes 
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Number of diagrams for gg → n gluons 

•number of diagrams grows very fast

•complexity of each diagrams grows with n 

Alternative methods? 



Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04
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✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)

Britto, Cachazo, Feng ’04
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Is it necessary to go beyond LO? 
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Very early observation: 

at least NLO corrections are needed to describe data 

Drell Yan production is one of the first processes for which NLO 

corrections have been computed



Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

�LO
njets(µ)

�LO
njets(µ�)

=
�

�s(µ)
�s(µ�)

�n

• Notice that at Leading Order the normalization is not under control:
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• Instead, choosing a scale µ’ one gets 

So the change of scale is an NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

�LO
njets(µ

�) = �s(µ�)nA(pi, �i, . . .) = �s(µ)n

�
1 + n b0 �s(µ) ln

µ2

µ�2 + . . .

�
A(pi, �i, . . .)



NLO n-jet cross-section

Now consider n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO.

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large logs 
and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since compensation mechanism kicks in  

• Scale variation is conventionally used to estimate theory uncertainty, but 
the validity of this procedure should not be overrated (see later) 
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�NLO
njets(µ) = �s(µ)nA(pi, �i, . . . ) + �s(µ)n+1

�
B(pi, �i, . . . )� nb0 ln

µ2

Q2
0

�
+ . . .



NLO calculations
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NLO accuracy requires to dress a process with one real or one 
virtual parton 

Sample diagrams shown. All diagrams must be included.

virtual 

real 

LO

NLO

requires loop 
integration over 

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction



Regularization procedures in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

• Divergences show up as intermediate poles 1/ε

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularizatiom has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

�
d4l

(2�)4
� µ2�

�
ddl

(2�)d
, d = 4� 2� < 4

• N.B. to preserve the correct dimensions a mass scale µ is needed
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� 1

0

dx

x
�

� 1

0

dx

x1��
=

1
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Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ used mostly at NNLO (not NLO)

- subtraction method ⇒ most used in NLO applications

�J
NLO =

�

n+1
d�J

R +
�

n
d�J

V
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary infrared-safe jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M�
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D=4-2ε 
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d�J
R = d�n+1|Mn+1|2F J

n+1(p1, . . . , pn+1)



• The n-jet cross-section becomes 

Subtraction method
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�J
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n

• Infrared safety of the jet definition implies 

lim
x�0

F J
n+1(x) = F J

n

• One can then add and subtract the analytically computed divergent part 

�J
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x)�
� 1

0

dx

x1+�
VF J

n +
� 1

0

dx

x1+�
VF J

n +
1
�
VF J

n

• KLN cancelation guarantees that 

lim
x�0

M(x) = V



Subtraction method

• This can be rewritten exactly as 

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematised in the seminal papers of Catani-Seymour (dipole subtraction, 
’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes
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�J
NLO

=

Z
1

0

dx

x1+✏

�
M(x)F J

n+1
� VF J

n

�
+O(1)VF J

n



Ingredients at NLO

set of subtraction terms  

tree graph rates with N+1 partons 
➔ soft/collinear divergences 
tree graph rates with N+1 partons 
➔ soft/collinear divergences 

set of subtraction terms  

A full N-particle NLO calculation requires:

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization 

bottleneck 
for a very 
long time 
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Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Virtual one-loop: two breakthrough ideas

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately

22



Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν

k2 − m2
→

∑
εν(k)εµ(k)δ(k2 − m2) (1)
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∑
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+

∑
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+
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Coefficients can be determined by solving a system of equations!
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One-loop: two breakthrough ideas



Virtual (one-loop) amplitude
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connection between NLO 
amplitudes and LO ones   

the problem of computing NLO QCD corrections is now solved

Bottleneck for a long time…  but thanks to these and other 
theoretical breakthrough ideas



Automated NLO (aka NLO revolution)
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Example: single Higgs production processes (similar results available for 
all SM processes of similar complexity, backgrounds to Higgs studies) 

✓A solved problem



What lead to this remarkable progress? 

The fact that 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2.one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

NLO revolution? 
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But for item 2. everything was there since the time of Passarino-Veltman 
(even item 2. was understood, but no efficient/practical method exited). 
We will later on compare this to the current status of NNLO 



NLO status
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Various public tools developed: Blackhat+Sherpa, GoSam+Sherpa, Helac-NLO, 
Madgraph5_aMC@NLO, NJet+Sherpa, OpenLoops+Sherpa, Samurai, Recola ...

• Practical limitation: high-multiplicity processes still difficult because of 
numerical instabilities, need long run-time on clusters to obtain stable 
results (edge: around 6 particles in the final state, depending on the 
process)

• Today focus on 

➡ automation of NLO for BSM signals 

➡ loop-induced processes: formally higher-order, but enhanced by 
gluon PDF

➡ automation of NLO electroweak corrections (necessary to match 
accuracy of NNLO)

➡ automation of NLO in SMEFT 

Comparison to NLO is the standard now in most LHC analyses 



Uncertainties 
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The “unpleasant” feature that cross-sections depend on the choice of 
renormalization and factorization scale can be turned into something useful, 
i.e. a way to quantify the theoretical error

Example: R-ratio
Fix both scales to the scale at which the hard process occurs (Q) and vary 
them up and down by a factor 2 

NB: 
• the factor 2 is conventional
• it is a procedure that seemed to work 

well in practice
• in complicated processes large degree of 

freedom in the choice of the scale
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‣ Scale variation is not a perfect procedure to assess the theory uncertainty 
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Figure 1. Scale dependence of the LO and NLO cross sections for tt̄+ 1-jet production at the Tevatron (left) and
the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.
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< 0) correspond to top-
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spectively, where incoming protons fly into the for-

ward direction by definition. Denoting the corre-

sponding NLO contributions to the cross sections by
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i.e. via a consistent expansion in αs. Note, however,

that the LO cross sections in Eq. (2) are evaluated in

the NLO setup (PDFs, αs). The results for the asym-

metry for different scale choices are shown in Fig. 2.

At LO we find an asymmetry of about −8%. The
scale dependence is rather small. This is a conse-

quence of the fact that αs cancels exactly between the

numerator and the denominator. In addition the resid-

ual factorization scale dependence also cancels to a

large extent in the ratio. At NLO we find a large cor-

rection compared to the LO result. The asymmetry

is almost washed out at NLO. The scale dependence

is increased in NLO which seems natural given the

small dependence in LO. To investigate the origin of

the large NLO corrections to the asymmetry we stud-

ied the dependence on pcutT , the minimal pT used to

resolve the additional jet. The results are shown in

Tab. 1. A strong dependence of the cross section on

pcutT is observed. For all pcutT values we find that the

NLO corrections to the cross section are of moderate
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Figure 2. Scale dependence of the LO and NLO

forward–backward charge asymmetry of the top-

quark in pp̄→ tt̄+jet+X at the Tevatron as taken from
Ref. [34] with µ= µf = µr.
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1. LHC example of NLO: tt+1jet

‣ Scale variation for ratios (asymmetries etc.) underestimates the uncertainty 

Cross-section Asymmetry 

‣ Ambiguities in the central scale choice (more so for more complicated 
processes) 
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Scale choice: example of W+3 jets (problem more severe with more jets)

... large logarithms can appear in some distributions, invalidating even an NLO prediction.
Bern et al. ’09

2. LHC example of NLO: W+3jets



Is NNLO needed? 
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LHC data clearly already requires NNLO
Same conclusion in all measurements examined so far

 With more data NLO likely to be insufficient

NLO

NNLO



Why is NNLO difficult
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calculation of two-loop 
master integrals (when many 
scales are involved)

methods to cancel 
(overlapping) divergences 
before integration

�
d�nd�2|Mtree|2n+2

�
d�nd�12Re|Mone�loop

n+1 Mtree
n+1|

�
d�n2Re|M2�loopMtree|

�
d�n

��
a4

1
�4

+ a3
1
�3

+ . . . + a0

�
�

�
a4

1
�4

+ a3
1
�3

+ . . . + b0)
��

Cancelation manifest after phase space integration, but to have fully 
differential results must achieve cancelation before integration



Ingredients for NNLO 
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At NNLO the situation is very different from NLO

1. leading order of very limited importance  
2. no procedure to reduce two-loop to tree-level (unitarity approaches 

still face many outstanding issues)
3. subtraction of singularities far from trivial 
4. basis set of master integrals not known, integrals not all/always 

known analytically

What changed in the last years (and keeps changing rapidly) 

1. technology to compute integrals
2. extension of systematic subtraction to NNLO 



NNLO: status 

34



NNLO uncertainty? 
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NNLO scale uncertainty bands of 1-2%. 

Is the theory uncertainty indeed 1-2%? 
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t

Gluon fusion Higgs 
production (in the large mt 

effective theory)

Vector boson fusion Higgs 
production (in the structure 
function approximation, i.e. 

double DIS process)

P1

P2

fq(x1)

fq(x2)
x2P2

x1P1

��, Z

l�

l+

N3LO: only 3 LHC process known so far 

Drell Yan (W and Z bosons 
to leptons)  



Higgs production at N3LO
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• O(100000) interference diagrams (1000 at NNLO)


• 68273802 loop and phase space integrals (47000 at NNLO)


• about 1000 master integrals (26 at NNLO) 




Higgs production at N3LO
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Anastasiou et al 1602.00695

• N3LO finally stabilizes the perturbative expansion 


• also matched to resummed calculation (essentially no impact on 
central value at preferred scale mH/2 )



Error budget: one example
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Gluon-fusion Higgs productions (known to N3LO fully differential)
Error budget: More data; lattice 

determination 𝛼s;

progress in 𝛼s fits

Removed by 

Czakon et al ’21

can be removed

Reduced by factor 2 
through mixed EW-
QCD calculations

Missing N3LO PDFs


Missing N4LO 

Dulat, Lazopoulos, Mistlberger ’18 



Summary of perturbative calculations

• LO: fully automated. Edge: 10-12 particles in the final state

• NNLO: the new frontier. Lots of new 2 → 2 processes in recent years.  
First 2 → 3 calculations for the LHC

• NLO: also automated. Edge: 4-6 particles in the final state

• NNNLO: fully inclusive Higgs production via gluon fusion (large mt 
effective theory), vector boson fusion (factorised approximation) and 
Drell Yan production 
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