Machine Learning in String Theory

1. Motivation and Introduction to Neural Networks

Magdalena Larfors, Uppsala University
Nordita Winter School 2024

Outline: Machine Learning in String Theory

* Why machine learning?

* Motivational problems: how can ML help string theorists?
* Getting started with ML

* ML problems and ML techniques

* Neural Networks

* Training NNs with backpropagation

A first peek at ML libraries

Why machine learning?

It works!
e Automating tasks (label images, speech recognition, ...)
* Solve hard problems (play go, synthesize information (chat-GPT etc) ...)

Recent successes driven by

* better network architectures and optimization methods
e better computational hardware (GPUs)

* more data (... and more money/energy for training)

 user-friendly libraries

Why ML in maths, physics, strings?

Physics:
* very large data volumes from experiments and observations

* image recognition and classification sometimes spot-on for analysis,
e.g. jet tagging in collisions, finding exoplanets
HEPML-LivingReview
nasa/deep-learning-adds-301-planets-to-keplers-total-count

* Theoretical physics/math:
study examples to find patterns, gain intuition and make conjectures
ML can effectively explore such “pure” data sets

Some motivational problems

* Find {SM, MISSM, inflation, dS, scale separation, ..} in the string theory
landscape
* Often requires hard computations! May even be practically unfeasible.
 Compute topology and geometry of extra dimensions

 Build/analyse effective field theories; what theories are allowed?

* Bootstrap for CFT

* Learn mathematical structures (perhaps of relevance for physics)

* Use physics-inspired models to explain how Machine Learning works
... literature exists on all of these topics

Getting started

* Having identified an interesting problem in string theory, how to get
started with the ML implementation?

* |s data given? If not, can you create it (at least in simpler settings)?
* For your input data, do you know the answer (label)?

* Classification or regression problem?

* Are there additional constraints on the answer?

* Do you need to search through complex landscapes?

VIL techniques

* Have labelled data (x, y), i.e. know true answer - today
Use supervised learning techniques

* Have unlabeled data (x) =2 Unsupervised learning - Thursday
Unlabeled data with constraints = Semi-supervised learning, PINNs

* Reinforcement learning (also genetic algorithms): - Friday
“solve” complex environment with known rules and goal (no data)

ML problems: regression or classification

* Regression: Regression
predict output as function of data What is the temperature going to
be tomorrow?
V777 -
84°
* Classification: Classification

Will it be Cold or Hot tomorrow?

Is data point of type A, B, C, ...7?
(really what is the probability ?) -

Fahrenheit |
0

* Both for regression and classification, want to predict some function

04

02

versus 02F

0.4

06

1 1 1 1 1 1 L]
20 30 40 50 60 70 80 90 100

-0.5 0.4 -03 02 -0.1 0 0. 0.2

Regression Classification

e Use a Neural Network = universal function approximator
Cybenko’89, Hornik et al’89, Hornik’91,...

Neural networks

Introducing neural nets

* Input layer = data x
* Qutput layer = prediction fg(x)
* Hidden layers

e Each layers has nodes (neurons)

Introducing neural nets

Hidden layers

e affine/linear transformation

A
| 1

Vg = A (Wyvg_1 + by)

T

* nonlinear activation function

The NN is a parametrized map fy: R" - R™ where 8 = {W,,, b}

Introducing neural nets

The NN is a parametrized map
Example: fp: R® -» R?!

* Vo = (xO'xl'xZ)T

101 1 1 1-
a” (WooXxo + Wo1X1 + WyaXx, + by)
al(wigxe + wiix; + wi,x, + bi

1.1 1 1 1
a” (Wyoxo + Wiy1x1 + Wyyx, + b3y)

10,1 1 1 1
Lla” (W3pXg + W31X1 + W3,Xo + b3).

Training the network

* Layers with parameters

Vi = A (Wyvg—1 + by)

N\

A)
Parameters = weights + bias

* Loss function says how far prediction is from true answer
Choose so that L = 0, with =iff fg(x) =y

* Aim: (good/global) minimum of loss function (in million-dim’l parameter space)
* Method: tune parameters so loss decreases = Gradient descent

Visualization - Gradient descent

o)
M \
B W Losslandscape as a function
1 | \‘/ of the NN parameters, and thus as a functional
@E:* AnN \ (function of a function) of the NN
' BaEY

Randomly initialized NN
= Random function
= Random point in loss landscape

Slide credit: Fabian Ruehle, MLMTP school 2023

Visualization - Gradient descent

step size = learning rate

/

Slide credit: Fabian Ruehle, MLMTP school 2023

Visualization - Gradient descent

Slide credit: Fabian IORueHIe, MLMTP school 2023

good learning rate

Visualization - Gradient descent

Slide c_redi;c: Fa_bian Ruehle, MLMTP school 2023

Lh

learning rate too big

Visualization - Gradient descent

slide credit: Fabian Ruehle, MLMTP school 2023

learning rate too small

Loss functions for supervised learning

Have: labelled data (x,y).
Loss function says how far prediction is from true answer

Choose so that L = 0, with =iff fa(x) =y

Regression:
2
* MSE (Mean squared error) * Lysp = %Z(y(xi) — fo (xl-))
. 1
MAE (Mean absolute error) o« Lyjap = NZ 1y () = f5 ()

 MAPE (M. a. percentage e.) y(x)—f o (x0) |

y(x;)

1
* Lyjape = NZ |

Loss functions for supervised learning

Regression: 1 2
* MSE (Mean squared error) * Lusg = Nz(y(xi) — fo(x))
. 1

MAE (Mean absolute error) e Lyjap = NZ ly(x;) — fo(x;)]

« MAPE (M. a. percentage e.)

1 y(xi)—fo(xi)
* Lyape = NZ | y(xg |
Classification

* Binary cross-entropy

+ Lpxg =+ 2 (y(x) log(fo () — [1 — y(x)]log(1 — f5 (x)))

Training the network

* Parameter updates w. gradient
descent

* Hope to find good/global min
- result that generalizes to new
data

* Divide data into train and test
sets; check result generalizes

Plot prediction of untrained NN on all data

Demo of simple NN [+ oll = [elo] for e in alldotal
pred = nn.predict(np.array(x_all))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.scatter([e[0] [@] for e in all_datal, [e[0][1] for e in all
ax.set_xlabel('x_0"')

 \Want to machine learn function ax_set.ylabel(ix711]

ax.set_zlabel('y")

plt.show()
plt.close()

14/14 [========== =====] - @s 1ms/step

1, x1x, <0
* ¥ (g, x7) = 0 x1x2>0

L0.575
£0.570
0.565
+0.560 7
10.555
F0.550
10.545

10

x0 3 10
- 10
Compare w ch 2 of https://github.com/ruehlef/Physics-Reports by Fabian Ruehle (physics context 1706.07024)

How can training be so quick?

* Gradient descent needs computing derivatives
— should take time, scaling problems (eg finite difference methods)

* ML libraries = efficient implementations of automatic differentiation
* Backpropagation: chain rule + info from ”“forward pass”

Backpropagation
* Have computed/initialized NN fp: R"™ — R™ where 8 = {W,, b}
* This means we know, for each layer

post-activation v¥ = a¥(z*) pre-activation zff = Wk vk~ + bf

 Compute gradients of last layer

=0 Av"_l
0L 9L 0z" azf Jowy, THATY
d6m 9zn g en oom azk
7k — Oua
/ L ab/’l #

aLMSE_ E A ni,n mye¢.-n

Backpropagation

* Have computed/initialized NN fg: R™ —» R™ with 8 = {W,, by}

* This means we know, for each layer
post-activation v

 Compute gradients of last layer

k

0L 0L 0z"

9" 9zn g en

/

e.g.

e = Ly - an@M)a™ (@™

0 zn N

= a*(z*) pre-activation z¥ = WK vf~1 + b

= §, vkl
k AVYv
azﬁ _ 6WAV K
09N ozk
k — Oua
| 93 H

All known from the “forward pass”

Backpropagation

* Have computed/initialized NN fg: R™ —» R™ with 8 = {W,, by}

* This means we know, for each layer
— k _ k(. k — k _ ywk ,,k—1 K
post-activation v* = a (Z) pre-activation z; = W, v, "~ + by

 Compute gradients of layer i

oL _ 8L 8z" 9z Bz again known from forward pass
90l 9zn0zn1ozn2" ggl b P

e Update parameters (step size o)

eieei—aaL.
0 0!

Nice activation functions

* Need the derivatives a’(2)
* Nice activation functions: derivative known from forward pass.
e Ex: sigmoid, tanh, RelLU:

1.07
1.07 /
0.8 0.5 3r
0.67
. . . . 2r
0.4t -4 -2 2 4
2r _ .5_ 1'/

-1.0p 4 9 5 A

=1/(1+e %) a(z) = tanh(x) a(z) = ReLU(z) = max(0, x)
a'(z) = a(z)[1 — a(z)] d'(z) =1 - [a(z)]” a'(z) = 0(x)

SGD and mini-batches

* Minimizing over all data has problems
* Large data sets need too much memory
e Get stuck in local minima/saddles

* Divide data into mini-batches and run GD updates batch by batch
 Stochastic update of parameters (see partial info in each batch)
* One epoch = one run over full data set. Train for several epochs.

Summary SGD and Backpropagation

* Goal: Update parameters to minimize loss function

: : 0L oL 0zN 0zt
* Chain rule -> gradients g; = 9l = 3N 3 N1 "3 gi

e Derivatives known using info from forward pass

* Update parameters 6;,, = 0} — At~ 7

e Updates done after run of one mini-batches
One epoch = one run over full data set. Train for several epochs.

* Implemented in ML libraries s.a. TensorFlow/Keras, PyTorch, JAX

Alternative optimization methods

* Variants of SGD aim to get
* Faster convergence
* Less problems with local min and saddles

* RMSprop: Root mean square propagation

0L
gt = 3, St=ﬁgt+(1—ﬁ)gt2 = Ory1= 0 _at\/i%

this adapts learning rate to gradient size
 Adam: even more refined; adapts learning rate and momentum

Known problems/challenges

* Gradients at layer i is proportional to gradient at layeri + 1
— gradients can vanish/explode at early layers

* Counteract this using
» gradient clipping,
e batch normalisation,
* NN initialized on the “edge of chaos”

©
0

o
o

EOC
EOC + BatchNorm
Ordered phase

o
F=Y

Without Gradient Clipping With Gradient Clipping

i N e T
] 0-
0 20 40 60 80 100
epoch

Hayou et al 1902.06853

Validation Accuracy

o
o

\/alidatrianm Arriiracsa

Hyperparameters and network architectures

* Hyperparameters: width, depth, learning rate, ...
How get optimal values? Need (systematic) experiments!

* Fully connected NNs is the simplest architecture

* More advanced layers:
Convolutional, dropout, recurrent, ...
Transformer architecture with attention mechanism --> (chat)-GPT

* We will not explain this here. Lot’s of literature & online resources!

Summary of this lecture

* Neural Nets are universal function approximators

* NNs are parametrized maps fg: R"™ — R™ w billion parameters 6
Layers with nodes; affine tf - weight & bias; non-linear activations

 Stochastic Gradient Descent with Backpropagation
* Use ML libraries: PyTorch, JAX, TensorFlow/Keras

* Hyperparameter optimization and network architectures
— you need time (and algorithms) to experiment

Plan for afternoon studies

* Reading:

* R. Schneider “Heterotic Compactifications in the Era of Data Science”, ch. 2
http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157

* F. Ruehle. “Data science applications to string theory” ch 2-3
https://www.sciencedirect.com/science/article/pii/S0370157319303072

* P. Mehta, et.al “A high-bias, low-variance introduction to ML for physicists”
https://www.sciencedirect.com/science/article/pii/S0370157319300766

* Online tutorials:
« ML and backprop by Callum Brodie

» Simple classification NN: ch 2 of https://github.com/ruehlef/Physics-Reports by
Fabian Ruehle (physics context 1706.07024)

