Lecture 3: ML \& string landscape

 Reinforcement LearningMagdalena Larfors, Uppsala University Nordita Winter School 2024

Summary of lecture 1-2

Lecture 1

- Universal function approximator
- Supervised learning (labelled data)
- SGD, Backpropagation

Lecture 2

- Simple NNs learn tricky geometry
- Semi-supervised learning (data+constraints)
- Custom loss functions

Outline: ML methods for Landscape searches

- Motivating problems
- Finding our Universe in the string theory Landscape
- Reinforcement Learning
- Simple examples
- States and actions
- Rewards and returns
- Goals and policies
- RL finds Standard-like Model (SLM) physics from heterotic line bundles
- Summary, reading and tutorials

Energy scale

String Theory
(Quantum Gravity)

Set of consistent low-
energy effective Quantum Field Theories

Landscape

String compactifications

- Pick your favourite version of string theory: M-theory, F-theory, type IIA/IIB, heterotic, ...
- Pick a SUSY-preserving compact geometry to get 4d: G2 mfd, CY 4-fold, CY 3-fold, toroidal orbifold, SU(3) structure mfd, ...
- Pick extra ingredients so you get the Standard Model (or GUT, ...) singularities, singular fibers, branes/O-planes, vector bundles, ...
- Then compute couplings, mass terms, stabilize moduli, break SUSY, ...

Heterotic compactifications on CYs

- Pick your favourite version of string theory: heterotic $E_{8} \times E_{8}$
- Pick a SUSY-preserving compact geometry to get 4d: CY 3-fold X
- Pick extra ingredients for particle physics:
holomorphic vector bundle $V \rightarrow X \mathrm{w}$. structure group in E_{8}
- There are still many choices!
- 7890 CICY 3-folds Candelas et al:88 KS CY 3-folds from toric 4-folds Kreuzer-Skarke:00
$473,800,776$ reflexive polyhedra, each leading to 1 or more CYs
$\rightarrow 10^{428}$ inequivalent CY 3-folds Demirtas-McAllister-Rios-Tascon:20
- Each CY can be paired with many different vector bundles
- A systematic scan over 10^{40} models gave $35^{\prime} 000 \mathrm{SU}(5)$ SLMs

String compactifications

- But why should we construct 1000s of Standard-like Models?
- Surely, one good model is enough to describe our Universe?
- Yes, but "needle in a haystack" \rightarrow Need good search algorithms
- Statistics of models: what is typical in string theory?
- Swampland: what cannot occur in string theory?
- Constraints are hard - working with large classes of OK models increase chance of finding a good model (whatever that means)
- Systematic scans are limited by computational resources \rightarrow try ML

Can we use supervised learning?

- Learn CY topology
- Known from algebraic geometry
- AG methods scale poorly
- Configuration matrix \rightarrow Image
- Can use s-o-t-a image recognition techniques
- Current lead (inception models):
$>99 \%$ accuracy on $h^{1,1}$
He:17, Ruehle:17, Bull-et.al.:18,19, KlaewerSchlechter:18, Constantin-Lukas:18, Brodieet.al.:19, ML-Schneider:19, Erbin-
Finotello:20, He-Lukas:20, Erbin-et.al.:22; ...

Can we use supervised learning?

- Current lead (inception models):
$>99 \%$ accuracy on $h^{1,1}$

$$
x \in[4 \| 5]
$$

- So this would give (jumping steps) 99% of the Standard Model?
- What does that mean?

Intro to Reinforcement Learning

Reinforcement Learning

Games

Blue: Worker, Red: Pitfalls, Green: Exit
Maze layout

Reinforcement Learning

- Idea: agent learns to win a game (solve an environment) by receiving rewards (pos \& neg)
- Solves large environments AlphaGo silver et al (Science, 2018)
- Learns from imperfect info OpenAl wins DotA 2

Reinforcement Learning

RL: solving a maze

- Environment = states \& actions
- States: positions $\{(1,1),(1,2), \ldots\}$
- Action: 1 step \{W,S,E,N\}
- Rewards:
- e.g. -1 for each step, -5 for hitting wall, -10 for pitfall, +100 for exit, ...
- The agent must develop a policy for which action to take, given the info available in the current state
- Explore vs exploit
- Try it out in tutorial!

Blue: Worker, Red: Pitfalls, Green: Exit
Maze layout

RL: terminology

- Environment, \mathcal{E}, is set of states \mathcal{S} and set of actions \mathcal{A}
- States $\mathcal{S}=\left\{s_{i}\right\}$: possible configurations (continuous/discrete, finite/infinite)
- Actions $\mathcal{A}=\left\{a_{i}: \mathcal{S} \rightarrow \mathcal{S}\right\}$: transitions between states
- Terminal states : no action possible; search ends here (pitfall or exit of maze)
- Episode: Sequence of states and actions that ends in a terminal state

$$
E=\left\{\left(s_{1}, a_{1}\right),\left(s_{2}, a_{2}\right), \ldots,\left(s_{n}, \emptyset\right)\right\}
$$

RL: terminology

- Policy, $\pi: \mathcal{S} \rightarrow \mathcal{A}$: given current state, determines action
- Deterministic or probabilistic
- Determined by expected value of action
- Reward: feedback to agent, depends on state and action
- Return (discounted accumulated future reward, depends on policy)

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\ldots=\sum \gamma^{k} R_{t+k+1}
$$

- Goal: find policy that maximizes return

RL with/without ML: back to the maze

- Markov decision problem
- Find policy given info of the value of states and actions
- For a small maze, can solve algorithmically
- Try 1: $\{(1,1 ; \mathrm{E})\}$ gives $G=-10$
- Try 2: $\{(1,1 ; \mathrm{S}),(2,1 ; \mathrm{E}),(2,2 ; \mathrm{E})\}$ gives $G=-1-\gamma-10 \gamma^{2}$

- ...
- Collect info of \{states, actions, returns\} in order to determine policy
- Requires memory
- Unfeasible for large mazes, or more complicated problems

RL: enter the neural nets

- State value function: $V_{\pi}(s)=E\left(G_{t} \mid s=s_{t}\right)$

Expected return from current state onward when following policy π

- Action value function: $q(a, s)=E\left(G_{t} \mid s=s_{t}, a=a_{t}\right)$ Expected return from picking an action in a given state
- Policy, state value and action value functions are interdependent.
- We seek estimators for best state value function, action value function, and policy; use neural nets
- Policy: NN observes state, predicts action
- State value function: NN observes state, predicts expected return
- Action value function: NN oserves state and action, predicts expected return

RL: summary

- Agent observes state in environment and take action following policy
- Feedback: reward and new state

- Agent updates policy and state/action value functions
- Agent observes new state... etc
- NNs can estimate policy and value functions

RL: algorithms \& libraries

- NNs can estimate policy and state/action value functions
- REINFORCE:
- NN for policy $\pi\left(a_{t} \mid s_{t} ; \theta_{\pi}\right)$
- parameter update by gradient ascent w.r.t (optimal) state value $v_{\pi}^{*}(s)$
- this requires full reward information of the whole episode
- Actor-Critic:
- NN as Actor to update policy $\pi\left(a_{t} \mid s_{t} ; \theta_{\pi}\right)$
- NN as Critic to update state value function $V\left(s_{t} ; \theta_{v}\right)=E\left[G_{t} \mid s=s_{t}\right]$
- Update parameters θ_{π}, θ_{V} using gradient ascent from

Advantage function $A=R_{i}-V\left(s_{i} ; \theta_{V}\right)$
Cross-entropy over actions

RL for heterotic model building

3 building blocks for heterotic SLMs

- Example
- Calabi Yau manifold \mathcal{M}.
- Discrete symmetry 「 (for Wilson line GUT breaking).
- Line bundle sum $V=\oplus L_{a}$.
- Explored systematically \rightarrow 35000 SLMs
Anderson et al
(1106.4804,1202.1757,1307.4787)

$$
\begin{aligned}
\mathcal{M}_{5302} & =\left[\begin{array}{l||lll}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array} \left\lvert\, \begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right.\right]_{-48}^{6,30}|\Gamma|=2 \\
V & =\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 1 \\
4 & -3 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
1 & 1 & 0 & -2 & 0
\end{array}\right]
\end{aligned}
$$

RL heterotic SLMs

Heterotic string compactification with three ingredients

- Calabi Yau manifold \mathcal{M}.
- Freely acting discrete symmetry Γ.
- Line bundle sum $V=\oplus L_{a} . \quad \rightarrow$ Environment for RL exploration
- The environment $\left\{V=\oplus L_{a}\right\}$ are just integer matrices In our paper, we set up two environments, with actions
- Stacking: precompiled list of slope stable L_{a} stacked and then replaced
- Flipping: initiate randomly and then flip individual entries
- Inspired by RL of intersecting brane models Halverson-Nelson-Ruehle:1903.11616

RL: implementation and libraries

Use A3C:
Asynchronous Advantage Actor Critic
Mnih et al (1602.01783)
ChainerRL Open AI gym

RL heterotic SLMs

To qualify as a heterotic SLM, the bundle must satisfy physical constraints.
\rightarrow Translate constraints to reward structure.

RL heterotic SLMs: reward structure

condition	reward
vanishing first Chern class	trivial
vanishing line bundle slope (3.28)	2
index constraint, three fermion generations (6.8)	10^{2}
Bianchi identity (6.4)	10^{5}
no Higgs triplets (6.12)	10^{5}
existence of Higgs doublets (6.12)*	10^{6}
no antigeneration (6.11)*	10^{7}
full stability (6.6)	10^{7}

- Topological constraints.
- Some immediate; others need AG;
- Automated: pyCICY, cohomcalg

Environments: Stacking

Precompile list L of $n_{\text {line }}$ slope stable line bundles with $-3|\Gamma| \leq \operatorname{index}\left(L_{a}\right) \leq 0$ Stack four of these, and adjust L_{5} to satisfy $c_{1}(V)=0$
\longrightarrow Constraints 1, 2, 3 are automatic
States: The line bundle sum V. Hence $S_{t} \in \mathbb{Z}^{(5, n P r o j)}$.
Actions: Pick $L_{a} \in L$ and replace one of L_{1-4}.
\# of configurations: $n_{\text {conf }}=n_{\text {line }}^{4}$.
Example: $\left(\mathcal{M}_{5302}, q_{\max }=2,|\Gamma|=2\right)$ gives $n_{\text {line }}=2890$ and $n_{\text {conf }} \approx 7 \cdot 10^{13}$.

$$
\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 1 \\
2 & 0 & -1 & -1 & 0 \\
-2 & -1 & 0 & -2 & 5 \\
0 & -1 & 0 & 2 & -1 \\
0 & 2 & -2 & 2 & -2 \\
2 & 2 & 1 & 0 & -5
\end{array}\right] \xrightarrow{A_{5}}\left[\begin{array}{ccccc}
-1 & -2 & 0 & 0 & 3 \\
2 & -2 & -1 & -1 & 2 \\
-2 & 0 & 0 & -2 & 4 \\
0 & 2 & 0 & 2 & -4 \\
0 & 0 & -2 & 2 & 0 \\
2 & 2 & 1 & 0 & -5
\end{array}\right]
$$

Environments: Flipping

No precompiled list, instead "flip" individual charges in L_{1-4}
Still adjust L_{5} to satisfy $c_{1}(V)=0$
\longrightarrow Constraint 1 is automatic
States: The line bundle sum V. Hence $S_{t} \in \mathbb{Z}^{(5, \mathrm{nProj})}$.
Actions: Pick a charge q_{i}^{j} and add ± 1. Thus $A_{t} \in\{1, \ldots, 4 \cdot 2 \cdot n$ Proj $\}$.
\# of configurations: $n_{\text {conf }}=\left(2 \cdot q_{\max }+1\right)^{4 \cdot h^{1,1}}$.
Example: $\left(\mathcal{M}_{5302}, q_{\max }=2,|\Gamma|=2\right)$ gives $n_{\text {conf }} \approx 5 \cdot 10^{16}$.

$$
\left[\begin{array}{ccccc}
1 & 1 & -1 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & -1 & -1 \\
1 & 1 & -1 & -1 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0
\end{array}\right] \xrightarrow{A_{5}}\left[\begin{array}{ccccc}
2 & 1 & -1 & 0 & -2 \\
-1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & -1 & -1 \\
1 & 1 & -1 & -1 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Stack or Flip?

Stack or Flip?

- Stacking close to human derived strategy of systematic scan
- Runtime about 50 minutes on 32 cores
- Moderately outperform random walker (factor 3-20)
- Gets stuck in local minima \rightarrow low number of unique models.
- Flipping strategy different from systematic scan
- Runtime about 3.5 hours on 32 cores
- Rapid increase in performance followed by flattening at late times
- Significantly outperform random walker (factor 300-1700)
- Large number of unique models.

RL goes beyond $h^{1,1}=7$ (unprobed by systematic scans)
$X[8,29]=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2\end{array} \left\lvert\, \begin{array}{cccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right.\right]_{-42}$
R. Schneider PhD thesis, 2022

run	all	unique
1	3576	2863
2	9577	4451
3	2296	1973
4	3554	2759
5	220071	9289
total	-	14374

RL design \& transfer learning

- RL is slow to start
- Pretraining agent possible:
- basic scan, with fewer constraints/rewards
- smaller set of bundles
- Benefit: pre-trained network could then be applied in full setting
- Transfer learning
- In 2003.04817 used pretrained agent from \mathcal{M}_{5265} on \mathcal{M}_{5452}

Summary

Reinforcement learning:

- Idea: agent learns to win a game (solve an environment) by receiving rewards (pos \& neg)
- Versatile method, can cope with large environments (discrete/cont.) and incomplete info
- Govern by Policy, $\pi: \mathcal{S} \rightarrow \mathcal{A}$: given current state, determines action
- Deterministic/probabilistic; Determined by expected value of action
- State and action value functions: expected return from state/action
- NNs can be used to estimate policy and value functions \rightarrow ML libraries ChainerRL, OpenAl gym
- Packages for string/math-related RL https://github.com/robin-schneider/gymCICY https://github.com/ruehlef/ribbon

Plan for afternoon studies

- Reading:
- F. Ruehle. "Data science applications to string theory", ch 8 https://www.sciencedirect.com/science/article/pii/S0370157319303072
- R. Schneider "Heterotic Compactifications in the Era of Data Science", ch. 6,7 http://uu.diva-portal.org/smash/record.jsf?pid=diva2\%3A1649343\&dswid=-2157
- Heterotic model building with RL: M. Larfors \& R. Schneider arXiv:2003.04817 S. Abel et al $\underline{2110.14029} \underline{2306.03147}$
- Online tutorials:
- Intro to RL by Callum Brodie https://colab.research.google.com/github/callum-ryan-brodie/oxford-ml-physmath-school/blob/main/oxford_ml_physmath_school_notebook_2.ipynb\#scrollTo=qDF-j8opXEaH
- RL of heterotic LB models by Robin Schneider https://github.com/robin-schneider/gymCICY/blob/master/agents/Tutorial.ipynb

