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Summary	of	lecture	1-2

Lecture 1
• Universal	function approximator
• Supervised learning
(labelled data)
• SGD,	Backpropagation

Lecture	2
• Simple	NNs	learn	tricky	
geometry
• Semi-supervised	learning	
(data+constraints)
• Custom	loss	functions

Visualization - Gradient descent
good learning rate



Outline:	ML	methods	for	Landscape	searches

• Motivating	problems	
• Finding	our	Universe	in	the	string	theory	Landscape

• Reinforcement	Learning
• Simple	examples
• States	and	actions
• Rewards	and	returns
• Goals	and	policies

• RL	finds	Standard-like Model	(SLM)	physics	from	heterotic	line	bundles

• Summary,	reading	and	tutorials
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Figure 1: A schematic illustration of the space of (apparently) self-consistent e↵ective quantum
field theories. The sub-set which could arise from string theory is the string Landscape, while
all the other theories are in the string Swampland.

Self-consistency becomes much less powerful at low energies, even for theories which include
gravity. In string theory this manifests as the existence, within our current understanding, of a
huge number of resulting low-energy e↵ective theories. Each such theory is constructed about a
di↵erent vacuum of string theory, and the rich vacuum structure of the theory, the so-called
String Theory Landscape, then translate into a large spectrum of e↵ective theories. However, it
is important to not confuse this richness of structure with a complete absence of constraints. The
resulting set of theories still picks out only a subset of all the possible apparently self-consistent
e↵ective theories. The use of apparently here means that there is nothing manifestly wrong
with the e↵ective theory, but an inconsistency would manifest should one try to complete it in
the ultraviolet. The idea of the String Theory Swampland was introduced in [1] as a way to
quantify and refer to these residual low-energy constraints.1 More precisely:

The Swampland can be defined as the set of (apparently) consistent e↵ective field theories
that cannot be completed into quantum gravity in the ultraviolet.

So string theory might lead to a large Landscape of e↵ective low-energy theories, but there is
an even larger Swampland of e↵ective theories that cannot come from string theory. This is
illustrated in figure 1. Note that we phrased the definition of the Swampland using a general
notion of quantum gravity, rather than specifically string theory. For simplicity of notation, we
will rarely distinguish between such a general quantum theory of gravity and string theory, but
it is natural to define the Swampland in this more general sense.

Of course, the abstract concept of the Swampland has no useful meaning unless we understand
how to distinguish between e↵ective field theories that are in the Landscape from those in the

1See also [2] for similar ideas at the same time.
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String	compactifications

• Pick	your	favourite version	of	string	theory:
M-theory,	F-theory,	type	IIA/IIB,	heterotic,	…
• Pick	a	SUSY-preserving	compact	geometry	to	get	4d:
G2	mfd,	CY	4-fold,	CY	3-fold,	toroidal	orbifold,	SU(3)	structure	mfd,	…
• Pick	extra	ingredients	so	you	get	the	Standard	Model	(or	GUT,	…)
singularities,	singular	fibers,	branes/O-planes,	vector	bundles,	…

• Then	compute	couplings,	mass	terms, stabilize moduli,	break	SUSY,	…

Many	choices	to	make!



Heterotic	compactifications	on	CYs

• Pick	your	favourite version	of	string	theory:	heterotic	𝐸"×𝐸"
• Pick	a	SUSY-preserving	compact	geometry	to	get	4d: CY	3-fold	𝑋
• Pick	extra	ingredients	for	particle	physics:	
holomorphic	vector	bundle	𝑉 → 𝑋 w.	structure	group	in	𝐸"
• There	are	still	many	choices!

• 7890	CICY	3-folds Candelas	et	al:88
KS	CY	3-folds	from	toric 4-folds		 Kreuzer-Skarke:00
473,800,776	reflexive	polyhedra,	each	leading	to	1	or	more	CYs
à 10428 inequivalent	CY	3-folds	 Demirtas–McAllister–Rios-Tascon:20

• Each	CY	can	be	paired	with	many	different	vector	bundles		
• A	systematic	scan	over	1040 models	gave	35’000	SU(5)	SLMs

Anderson	et	al	1307.4787



String	compactifications

• But	why	should	we	construct	1000s	of	Standard-like	Models?
• Surely,	one	good	model	is	enough	to	describe	our	Universe?

• Yes,	 but	“needle	in	a	haystack”	à Need	good	search	algorithms	
• Statistics	of	models:	what	is	typical	in	string	theory?	
• Swampland:	what	cannot	occur	in	string	theory?
• Constraints	are	hard	– working	with	large	classes	of	OK	models	
increase	chance	of	finding	a	good	model	(whatever	that	means)
• Systematic	scans	are	limited	by	computational	resources	à try	ML



Can	we	use	supervised	learning?

• Learn	CY	topology	
• Known	from	algebraic	geometry
• AG	methods	scale	poorly

• Configuration	matrix	à Image
• Can	use	s-o-t-a	image	
recognition	techniques
• Current	lead	(inception	models):	

>99%	accuracy	on	ℎ(,(
He:17,	Ruehle:17,	Bull-et.al.:18,19,	Klaewer–
Schlechter:18,	Constantin–Lukas:18,	Brodie-
et.al.:19,	ML–Schneider:19,	Erbin–
Finotello:20,	He–Lukas:20,	Erbin-et.al.:22;	...	

Learning CY topology

E.g. CICY topology - it’s all in the configuration matrix!
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Learning CY topology CICYs with image recognition tools

He:17, ..., example & figure from Robin Schneider’s PhD thesis

run all unique

1 3576 2863

2 9577 4451

3 2296 1973

4 3554 2759

5 220071 9289

total - 14374

Figure 7.1. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.7). Note the logarith-
mic scaling on the y-axis. The plots shows the total number of found models plotted
against a global step counter.

X[8,29]
Consider the CICY given by the following configuration matrix

X [8,29] =

2

666666664

1 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 1 0
2 1 0 0 1 0 0 0 0 0 1
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 0 0 1 0 0 0 1
2 0 0 0 1 1 1 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0

3

777777775

8,29

�42

(7.7)

Figure 7.1 shows the found models at the global time step t for five experi-
mental runs with different seeds. The plot has a logarithmic y-axis because of
a large discrepancy in models found between the different runs. Four of the
experiments find less than 104 models while the last one discovers 2.2⇥105.
The majority of these models are, however, not unique as shown in the table
to the right. After removing duplicates and permutations of the line bundles
the last experiment still finds more SLMs than the other experiments but now
at the same order of magnitude. The majority of models found by the other
agents are unique.

The agent corresponding to the fifth seed has developed a strategy to recover
successfully memorised solutions. The observed discrepancy in performance
for the same hyperparameters is often criticised in deep reinforcement learning
experiments [213]. It is the reason why experimental runs consisting of a set
of at least five experiments are reported rather than showing the results of a
single fortunate run [214, 215].

80

Figure 4.1. Two CICYs plotted as 2d-image: to the left the CICY with index 123 in the
CICY list and to the right a CICY studied in a later chapter for model building and
defined by the configuration matrix (7.7).

4.1 Learning tangent bundle cohomologies
CICYs are a natural starting point for testing the performance of machine
learning algorithms in solving problems of algebraic geometry. All topologi-
cally distinct CICY three- and four-folds have been compiled in two separate
datasets [106–108, 131]. The three-folds contain 7890 data samples which
can be efficiently parsed on a laptop, while the roughly 106 four-folds are
large enough to test more complicated architectures requiring larger amounts
of training data. These datasets form the basis of several supervised learning
studies and accuracy benchmarks in learning their Hodge numbers. The orig-
inal motivation initiating these benchmark studies was to see whether deep
learning can be utilised to study various topological quantities required in
string compactifications [24].

In case of the three-folds, the maximal dimensions of a configuration ma-
trix (3.11) are 13 projective spaces and 15 hypersurfaces. Hence, to have a
dataset with uniform shape all configuration matrices with matrix dimensions
smaller than (13,15) are padded with zeros to the bottom and right.1 An exam-
ple of this padding is presented in fig. 4.1, which contains two CICYs, X123 of
the CICY list to the left and another CICY with Hodge numbers X [8,29] given
by the configuration matrix (7.7) to the right. As evident from the colorbar of

1Note that in this 2d-image representation of the configuration matrix the first column contain-
ing the dimension of the projective space has been omitted. This information is redundant due
to the Calabi-Yau condition ni + 1 = �K

a qa
i . For some algorithms it was shown to improve the

performance when the information was kept in the training data [28].
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Can	we	use	supervised	learning?

• Current	lead	(inception	models):	
>99%	accuracy	on	ℎ(,(

• So	this	would	give	(jumping	steps)
99%	of	the	Standard	Model?

• What	does	that	mean?

Learning CY topology

E.g. CICY topology - it’s all in the configuration matrix!
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Figure 4.1. Two CICYs plotted as 2d-image: to the left the CICY with index 123 in the
CICY list and to the right a CICY studied in a later chapter for model building and
defined by the configuration matrix (7.7).

4.1 Learning tangent bundle cohomologies
CICYs are a natural starting point for testing the performance of machine
learning algorithms in solving problems of algebraic geometry. All topologi-
cally distinct CICY three- and four-folds have been compiled in two separate
datasets [106–108, 131]. The three-folds contain 7890 data samples which
can be efficiently parsed on a laptop, while the roughly 106 four-folds are
large enough to test more complicated architectures requiring larger amounts
of training data. These datasets form the basis of several supervised learning
studies and accuracy benchmarks in learning their Hodge numbers. The orig-
inal motivation initiating these benchmark studies was to see whether deep
learning can be utilised to study various topological quantities required in
string compactifications [24].

In case of the three-folds, the maximal dimensions of a configuration ma-
trix (3.11) are 13 projective spaces and 15 hypersurfaces. Hence, to have a
dataset with uniform shape all configuration matrices with matrix dimensions
smaller than (13,15) are padded with zeros to the bottom and right.1 An exam-
ple of this padding is presented in fig. 4.1, which contains two CICYs, X123 of
the CICY list to the left and another CICY with Hodge numbers X [8,29] given
by the configuration matrix (7.7) to the right. As evident from the colorbar of

1Note that in this 2d-image representation of the configuration matrix the first column contain-
ing the dimension of the projective space has been omitted. This information is redundant due
to the Calabi-Yau condition ni + 1 = �K

a qa
i . For some algorithms it was shown to improve the

performance when the information was kept in the training data [28].
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Intro	to	Reinforcement	Learning



Reinforcement	Learning	 Games



Reinforcement	Learning

• Idea:	agent learns	to	win	a	game	
(solve	an	environment)	by	
receiving	rewards (pos &	neg)

• Solves	large	environments
AlphaGo Silver	et	al	(Science,	2018)	

• Learns	from	imperfect	info	
OpenAI wins	DotA 2	
Berner et	al	1912.06680



Reinforcement	Learning
Reinforcement Learning

Magdalena Larfors (Uppsala University) Reinforcement learning heterotic line bundle models 14 Dec 2020 6 / 24



RL:	solving	a	maze

• Environment	=	states	&	actions
• States:	positions	{(1,1),(1,2),…}
• Action:	1	step	{W,S,E,N}
• Rewards:	

• e.g.	-1	for	each	step,	-5	for	hitting	wall,	
-10	for	pitfall,	+100	for	exit,	…

• The	agent	must	develop	a	policy for	
which	action	to	take,	given	the	info	
available	in	the	current	state
• Explore	vs	exploit

• Try	it	out	in	tutorial!



RL:	terminology

• Environment,	ℰ,	is	set	of	states	𝒮 and	set	of	actions	𝒜
• States	𝒮 = 𝑠0 :	possible	configurations
(continuous/discrete,	finite/infinite)
• Actions	𝒜 = {𝑎0: 	𝒮 → 𝒮} :	transitions	between	states
• Terminal	states	:	no	action	possible;	search	ends	here	
(pitfall	or	exit	of	maze)
• Episode:	Sequence	of	states	and	actions	that	ends	in	a	terminal	state	

𝐸	 = 𝑠(, 𝑎( , 𝑠5, 𝑎5 , … , 𝑠7, ∅ 	



RL:	terminology

• Policy,	𝜋: 𝒮 → 𝒜 :	given	current	state,	determines	action
• Deterministic	or	probabilistic
• Determined	by	expected	value	of	action

• Reward:	feedback	to	agent,	depends	on	state	and	action
• Return	(discounted	accumulated	future	reward,	depends	on	policy)
 𝐺; 	= 	𝑅;=( 	+ 	𝛾𝑅;=5 	+	… = ∑𝛾A𝑅;=A=(�

�  

• Goal:	find	policy	that	maximizes	return



RL	with/without	ML:	back	to	the	maze

• Markov	decision	problem
• Find	policy	given	info	of	the	value	of	states	and	actions
• For	a	small	maze,	can	solve	algorithmically
• Try	1:	{(1,1;E)}		gives	𝐺 = −10
• Try	2:	{(1,1;S),(2,1;E),(2,2;E)}		gives	𝐺 = −1 − γ − 10𝛾5
• …

• Collect	info	of	{states,	actions,	returns}	in	order	to	determine	policy
• Requires	memory
• Unfeasible	for	large	mazes,	or	more	complicated	problems



RL:	enter	the	neural	nets

• State	value	function:			𝑉G(𝑠) 	= 𝐸(𝐺;	|	𝑠	 = 	 𝑠;)
Expected	return	from	current	state	onward	when	following	policy	𝜋
• Action	value	function:	𝑞 𝑎, 𝑠 = 𝐸 𝐺;	 𝑠	 = 	 𝑠;, 𝑎	 = 	𝑎;)	
Expected	return	from	picking	an	action	in	a	given	state
• Policy,	state	value	and	action	value	functions	are	interdependent.
• We	seek	estimators	for	best	state	value	function,	action	value	
function,	and	policy;	use	neural	nets
• Policy:	NN	observes	state,	predicts	action
• State	value	function:	NN	observes	state,	predicts	expected	return
• Action	value	function:	NN	oserves state	and	action,	predicts	expected	return



RL:	summary

• Agent	observes	state	in		
environment	and	take	action	
following	policy
• Feedback:	reward	and	new	state
• Agent	updates	policy	and	
state/action	value	functions	
• Agent	observes	new	state… etc

• NNs	can estimate policy	and	
value functions

Reinforcement Learning
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RL:	algorithms	&	libraries

• NNs	can estimate policy	and	state/action	value functions
• REINFORCE:	
• NN	for	policy	𝜋(𝑎;|𝑠;; 𝜃G)
• parameter	update	by	gradient	ascent	w.r.t (optimal)	state	value	𝑣G∗ 𝑠
• this requires full	reward information	of the	whole episode

• Actor-Critic:	
• NN	as	Actor to	update	policy	𝜋 𝑎; 𝑠;; 𝜃G
• NN	as	Critic to	update state value function 𝑉 𝑠;; 𝜃P = 	𝐸 𝐺; 𝑠	 = 	 𝑠;
• Update parameters	𝜃G, 𝜃Q using gradient	ascent from	

Advantage function 	𝐴 = 	𝑅0 	− 𝑉 𝑠0; 𝜃Q
Cross-entropy over	actions	

Reinforcement Learning
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RL	for	heterotic	model	building



3	building	blocks	for	heterotic	SLMs

• Calabi Yau manifold	ℳ.	
• Discrete	symmetry	Γ
(for	Wilson	line	GUT	breaking).	
• Line	bundle	sum	𝑉	 =	⊕ 𝐿V.	
• Explored	systematically	→	
35	000	SLMs
Anderson	et	al	
(1106.4804,1202.1757,1307.4787)	

• Example	

Environments

Heterotic string compactification with three ingredients
1 Calabi Yau manifold M.
2 Line bundle sum V = �5

a=1
La.

3 Freely acting discrete symmetry � for Wilson line.

Explored systematically �! 35 000 standard like models
Anderson et al (1106.4804,1202.1757,1307.4787).

For example:

M5302 =

2

6666664

1 0 1 1
1 0 1 1
1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1

3

7777775

6,30

�48

and V =

2

6666664

�1 0 0 0 1
4 �3 �1 0 0
0 0 �1 1 0
0 0 0 0 0
0 0 1 0 �1
1 1 0 �2 0

3

7777775

and |�| = 2. There are a total of 6294 such models.
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NB:	configuration	encoded	in	simple	integer	matrices!



RL	heterotic	SLMs

Heterotic	string	compactification	with	three	ingredients	
• Calabi Yau manifold	ℳ.	
• Freely	acting	discrete	symmetry	Γ.	
• Line	bundle	sum	𝑉	 =	⊕ 𝐿V.	 à Environment	for	RL	exploration

• The	environment	{𝑉	 =	⊕ 𝐿V	} are	just	integer	matrices
In	our	paper,	we	set	up	two	environments,	with	actions
• Stacking:	precompiled	list	of	slope	stable	𝐿V stacked	and	then	replaced
• Flipping:	initiate	randomly	and	then	flip	individual	entries
• Inspired	by	RL	of	intersecting	brane	models	Halverson–Nelson–Ruehle:1903.11616	

Keep	fixed

ML-Schneider:2003.04817
R.	Schneider	PhD	thesis,	2022



RL:	implementation	and	libraries
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Figure 1: The fully connected deep neural network architecture of the actor and critic, who output the policy
and value function, respectively. The input states consist of the (5, h(1,1)) integer matrices that specify the
heterotic line bundle sums we want to explore. The dimensions of the policy output are RnL for the stacking

and R8·h(1,1)

for the flipping environments.

A. At any given time, the agent is in a state st 2 S,
and picks some action at 2 A which takes the agent
to a new state st+1, where it receives a scalar reward
rt. The agent’s actions are determined by a policy
⇡, which observes the input state st from which it
determines an action at. The agent is trained, i.e.
updates its policy function, such that it maximizes
the accumulated reward

Rt =
1X

k=0

�
k
rt+k+1 ,

where � is a discount factor with � 2 (0, 1] that can
be used to tune the agent’s strategy towards short
or long term rewards. This process continues until a
terminal state tend is reached.

Asynchronous Advantage Actor-Critic models,
proposed in 2016 [32], provide an e�cient and sta-
ble way to train reinforcement learning algorithms
on a CPU. Actor Critic agents consist of two esti-

mators, usually neural networks, that are competing
with each other. First, the Actor, who is learning the
policy ⇡(at|st; ✓⇡) and second, a Critic that updates
a state value function

V (st; ✓v) = E[Rt|s = st]

giving an approximate scalar value for each state.
The policy and state value functions are determined
by the weights ✓⇡, ✓v of the involved neural networks,
and the learning of the agent is encoding in updat-
ing these weights. The asynchronous behaviour of
the A3C agents arises from distributing the process
over nthreads workers, each exploring E and updating
their own set of parameters. Once a worker has been
active for t = tmax, it will provide information that
updates a global set of parameters, and then restart
its training using the global parameters that encode
the collective learning of all workers. The robustness
of the A3C relies on these asynchronous updates of

4

Use	A3C:		
Asynchronous	Advantage	
Actor	Critic			
Mnih et al (1602.01783)	
ChainerRL
Open	AI	gym



RL	heterotic	SLMs

Environments

Heterotic string compactification with three ingredients
1 Calabi Yau manifold M.
2 Line bundle sum V = �5

a=1
La �! Environment.

3 Freely acting discrete symmetry � for Wilson line.

To qualify as a heterotic SLM, the bundle must satisfy physical constraints.

! Translate constraints to reward structure.

Magdalena Larfors (Uppsala University) Reinforcement learning heterotic line bundle models 14 Dec 2020 11 / 24



• Topological	constraints.
• Some	immediate;	

others	need	AG;
• Automated:

pyCICY,	cohomcalg

condition reward

vanishing first Chern class trivial
vanishing line bundle slope (3.28) 2

index constraint, three fermion generations (6.8) 102

Bianchi identity (6.4) 105

no Higgs triplets (6.12) 105

existence of Higgs doublets (6.12)* 106

no antigeneration (6.11)* 107

full stability (6.6) 107

Table 7.1. Consistency checks for a line bundle sum and their rewards in gymCICY.
Constraints marked with a (*) require lengthy cohomology computations and have
been disabled for the experiments in section 7.2.

where the hyperparameter β regulates the entropy contribution. There are mul-
tiple agents exploring different instances of the environment. The accumulated
gradient updates are then averaged in the synchronous setting or alternatively
they asynchronously update a global set of parameters for the two networks.
This exploration of multiple instances makes the learning process more robust
and further helps exploration if the initial state or the actions are chosen non
deterministically.

7.2 Exploring uncharted territories
This section reports the results of RL studies investigating heterotic line bun-
dle models on three CICYs with freely acting Z3-symmetry and h(1,1) ≥ 7.
These CICYs have not been searched for SLM previously as their configura-
tion matrices are not part of the regular CICY list. Furthermore, h(1,1) ≥ 8
is beyond systematic reach [192] which includes two of the CICYs consid-
ered in this section and is hence an interesting region for exploration with
RL agents. The favourable configuration matrices investigated here admit
Z3−symmetries, which are found by applying repeated effective splitting from
the starting configuration matrix

X [3,48] =

[
2 1 1 1
2 1 1 1
2 1 1 1

]3,48

−90

. (7.5)

This manifold in turn is just an effective split away from the bi-cubic manifold
from which the initial Z3−symmetry descends. This web of splitting has been
studied extensively in Refs. [209, 210].

The A2C agents will explore the flipping environment of the gymCICY li-
brary. In paper II it was shown that this environment allows for an exploration
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Environments: Stacking

Precompile list L of nline slope stable line bundles with �3|�|  index(La)  0

Stack four of these, and adjust L5 to satisfy c1(V ) = 0

�! Constraints 1, 2, 3 are automatic

States: The line bundle sum V . Hence St 2 Z(5,nProj).

Actions: Pick La 2 L and replace one of L1�4.

# of configurations: nconf = n
4

line
.

Example: (M5302, qmax = 2, |�| = 2) gives nline = 2890 and nconf ⇡ 7 · 1013.

2

666664

�1 0 0 0 1

2 0 �1 �1 0

�2 �1 0 �2 5

0 �1 0 2 �1

0 2 �2 2 �2

2 2 1 0 �5

3

777775

At!

2

666664

�1 �2 0 0 3

2 �2 �1 �1 2

�2 0 0 �2 4

0 2 0 2 �4

0 0 �2 2 0

2 2 1 0 �5

3

777775
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Environments: Flipping

No precompiled list, instead “flip” individual charges in L1�4

Still adjust L5 to satisfy c1(V ) = 0

�! Constraint 1 is automatic

States: The line bundle sum V . Hence St 2 Z(5,nProj).

Actions: Pick a charge q
j
i and add ±1. Thus At 2 {1, ..., 4 · 2 · nProj}.

# of configurations: nconf = (2 · qmax + 1)4·h
1,1

.

Example: (M5302, qmax = 2, |�| = 2) gives nconf ⇡ 5 · 1016.

2

666664

1 1 �1 0 �1

�1 0 1 0 0

1 1 0 �1 �1

1 1 �1 �1 0

�1 1 0 0 0

�1 1 0 0 0

3

777775

At!

2

666664

2 1 �1 0 �2

�1 0 1 0 0

1 1 0 �1 �1

1 1 �1 �1 0

�1 1 0 0 0

�1 1 0 0 0

3

777775
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Stack	or	Flip?



Stack	or	Flip?

• Stacking	close	to	human	derived	strategy	of	systematic	scan	
• Runtime	about	50	minutes	on	32	cores	
• Moderately	outperform	random	walker	(factor	3-20)	
• Gets	stuck	in	local	minima	−→	low	number	of	unique	models.	

• Flipping	strategy	different	from	systematic	scan	
• Runtime	about	3.5	hours	on	32	cores	
• Rapid	increase	in	performance	followed	by	flattening	at	late	times	
• Significantly	outperform	random	walker	(factor	300-1700)	
• Large	number	of	unique	models.	



RL	goes	beyond	ℎ(,( = 7 (unprobed by	systematic	scans)

run all unique

1 3576 2863

2 9577 4451

3 2296 1973

4 3554 2759

5 220071 9289

total - 14374

Figure 7.1. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.7). Note the logarith-
mic scaling on the y-axis. The plots shows the total number of found models plotted
against a global step counter.

X[8,29]
Consider the CICY given by the following configuration matrix

X [8,29] =





1 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 1 0
2 1 0 0 1 0 0 0 0 0 1
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 0 0 1 0 0 0 1
2 0 0 0 1 1 1 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0





8,29

−42

(7.7)

Figure 7.1 shows the found models at the global time step t for five experi-
mental runs with different seeds. The plot has a logarithmic y-axis because of
a large discrepancy in models found between the different runs. Four of the
experiments find less than 104 models while the last one discovers 2.2×105.
The majority of these models are, however, not unique as shown in the table
to the right. After removing duplicates and permutations of the line bundles
the last experiment still finds more SLMs than the other experiments but now
at the same order of magnitude. The majority of models found by the other
agents are unique.

The agent corresponding to the fifth seed has developed a strategy to recover
successfully memorised solutions. The observed discrepancy in performance
for the same hyperparameters is often criticised in deep reinforcement learning
experiments [213]. It is the reason why experimental runs consisting of a set
of at least five experiments are reported rather than showing the results of a
single fortunate run [214, 215].
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the last experiment still finds more SLMs than the other experiments but now
at the same order of magnitude. The majority of models found by the other
agents are unique.

The agent corresponding to the fifth seed has developed a strategy to recover
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of at least five experiments are reported rather than showing the results of a
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RL	design	&		transfer	learning

• RL	is	slow	to	start	
• Pretraining agent	possible:	
• basic	scan,	with	fewer	
constraints/rewards
• smaller	set	of	bundles

• Benefit:	pre-trained	network	
could	then	be	applied	in	full	
setting

• Transfer	learning
• In	2003.04817	used	pretrained	
agent	from	ℳX5YX on	ℳXZX5



Summary

Reinforcement	learning:	
• Idea:	agent learns	to	win	a	game	(solve	an	environment)	by	receiving	
rewards (pos &	neg)
• Versatile	method,	can	cope	with	large	environments	(discrete/cont.)	and	
incomplete	info
• Govern	by	Policy,	𝜋: 𝒮 → 𝒜 :	given	current	state,	determines	action

• Deterministic/probabilistic; Determined	by	expected	value	of	action
• State	and	action	value	functions:	expected	return	from	state/action
• NNs	can	be	used	to	estimate	policy	and	value	functions	–>	ML	libraries	
ChainerRL,	OpenAI gym
• Packages	for	string/math-related	RL	
https://github.com/robin-schneider/gymCICY
https://github.com/ruehlef/ribbon



Plan	for	afternoon	studies

• Reading:	
• F.	Ruehle.	“Data	science	applications	to	string	theory”,	ch 8		
https://www.sciencedirect.com/science/article/pii/S0370157319303072	
• R.	Schneider	“Heterotic	Compactifications	in	the	Era	of	Data	Science”,	ch. 6,7	

http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157

• Heterotic	model	building	with	RL:
M.	Larfors &	R.	Schneider	arXiv:2003.04817 S.	Abel	et	al	2110.14029 2306.03147

• Online	tutorials:
• Intro	to	RL	by	Callum Brodie
https://colab.research.google.com/github/callum-ryan-brodie/oxford-ml-physmath-
school/blob/main/oxford_ml_physmath_school_notebook_2.ipynb#scrollTo=qDF-j8opXEaH
• RL	of	heterotic	LB	models by	Robin	Schneider
https://github.com/robin-schneider/gymCICY/blob/master/agents/Tutorial.ipynb


