Lecture 3: ML & string landscape Reinforcement Learning

Magdalena Larfors, Uppsala University Nordita Winter School 2024

Summary of lecture 1-2

Lecture 1

- Universal function approximator
- Supervised learning (labelled data) Visualization - Gradient descent
 SGD, Backpropagation

Lecture 2

- Simple NNs learn tricky geometry
- Semi-supervised learning (data+constraints)
- Custom loss functions

Outline: ML methods for Landscape searches

- Motivating problems
 - Finding our Universe in the string theory Landscape
- Reinforcement Learning
 - Simple examples
 - States and actions
 - Rewards and returns
 - Goals and policies
- RL finds Standard-like Model (SLM) physics from heterotic line bundles
- Summary, reading and tutorials

Picture source: Palti (19)

String compactifications

- Pick your favourite version of string theory: M-theory, F-theory, type IIA/IIB, heterotic, ...
- Pick a SUSY-preserving compact geometry to get 4d: G2 mfd, CY 4-fold, CY 3-fold, toroidal orbifold, SU(3) structure mfd, ...
- Pick extra ingredients so you get the Standard Model (or GUT, ...) singularities, singular fibers, branes/O-planes, vector bundles, ...
- Then compute couplings, mass terms, stabilize moduli, break SUSY, ...

Heterotic compactifications on CYs

- Pick your favourite version of string theory: heterotic $E_8 \times E_8$
- Pick a SUSY-preserving compact geometry to get 4d: CY 3-fold X
- Pick extra ingredients for particle physics: holomorphic vector bundle $V \rightarrow X$ w. structure group in E_8
- There are still many choices!
 - 7890 <u>CICY 3-folds</u>
 <u>KS CY 3-folds</u> from toric 4-folds
 <u>473,800,776</u> reflexive polyhedra, each leading to 1 or more CYs
 → 10⁴²⁸ inequivalent CY 3-folds
 Candelas et al:88
 Kreuzer-Skarke:00
 Demirtas-McAllister-Rios-Tascon:20
 - Each CY can be paired with many different vector bundles
- A systematic scan over 10⁴⁰ models gave 35'000 SU(5) SLMs

Anderson et al 1307.4787

String compactifications

- But why should we construct 1000s of Standard-like Models?
- Surely, one good model is enough to describe our Universe?
- Yes, but "needle in a haystack" → Need good search algorithms
- Statistics of models: what is typical in string theory?
- Swampland: what cannot occur in string theory?
- Constraints are hard working with large classes of OK models increase chance of finding a good model (whatever that means)
- Systematic scans are limited by computational resources \rightarrow try ML

Can we use supervise $\int_{10^2}^{10^3}$

- Learn CY topology
 - Known from algebraic geometry

 10^{0}

- AG methods scale poorly
- Configuration matrix \rightarrow Image
- Can use s-o-t-a image recognition techniques
- Current lead (inception models): >99% accuracy on $h^{1,1}$ He:17, Ruehle:17, Bull-et.al.:18,19, Klaewer-Schlechter:18, Constantin-Lukas:18, Brodieet.al.:19, ML-Schneider:19, Erbin-Finotello:20, He-Lukas:20, Erbin-et.al.:22; ...

CARL ROLLARS

- 0.8

Can we use supervise

 10^{0} 10^{-1} 0.0

- Current lead (inception models): >99% accuracy on $h^{1,1}$
- So this would give (jumping steps) 99% of the Standard Model?
- What does that mean?

 $X \in \left[\begin{array}{c} 4 \\ 5 \end{array} \right]$

Intro to Reinforcement Learning

Reinforcement Learning Games

Blue: Worker, Red: Pitfalls, Green: Exit

Maze layout

Reinforcement Learning

- Idea: agent learns to win a game (solve an environment) by receiving rewards (pos & neg)
- Solves large environments AlphaGo Silver et al (Science, 2018)
- Learns from imperfect info OpenAl wins DotA 2

Berner et al 1912.06680

Reinforcement Learning

RL: solving a maze

- Environment = states & actions
- States: positions {(1,1),(1,2),...}
- Action: 1 step {W,S,E,N}
- Rewards:
 - e.g. -1 for each step, -5 for hitting wall, -10 for pitfall, +100 for exit, ...
- The agent must develop a policy for which action to take, given the info available in the current state
- Explore vs exploit
- Try it out in tutorial!

Blue: Worker, Red: Pitfalls, Green: Exit

Maze layout

RL: terminology

- Environment, \mathcal{E} , is set of states \mathcal{S} and set of actions \mathcal{A}
- States $S = \{s_i\}$: possible configurations (continuous/discrete, finite/infinite)
- Actions $\mathcal{A} = \{a_i : S \to S\}$: transitions between states
- Terminal states : no action possible; search ends here (pitfall or exit of maze)
- Episode: Sequence of states and actions that ends in a terminal state $E = \{(s_1, a_1), (s_2, a_2), \dots, (s_n, \emptyset)\}$

RL: terminology

- Policy, $\pi: S \to \mathcal{A}$: given current state, determines action
 - Deterministic or probabilistic
 - Determined by expected value of action
- Reward: feedback to agent, depends on state and action
- Return (discounted accumulated future reward, depends on policy) $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum \gamma^k R_{t+k+1}$
- Goal: find policy that maximizes return

RL with/without ML: back to the maze

- Markov decision problem
- Find policy given info of the value of states and actions
- For a small maze, can solve algorithmically
 - Try 1: {(1,1;E)} gives G = -10
 - Try 2: {(1,1;S),(2,1;E),(2,2;E)} gives $G = -1 \gamma 10\gamma^2$
- Collect info of {states, actions, returns} in order to determine policy
- Requires memory

•

• Unfeasible for large mazes, or more complicated problems

Maze layout

Blue: Worker, Red: Pitfalls, Green: Exit

RL: enter the neural nets

- State value function: $V_{\pi}(s) = E(G_t | s = s_t)$ Expected return from current state onward when following policy π
- Action value function: $q(a, s) = E(G_t | s = s_t, a = a_t)$ Expected return from picking an action in a given state
- Policy, state value and action value functions are interdependent.
- We seek estimators for best state value function, action value function, and policy; use neural nets
 - Policy: NN observes state, predicts action
 - State value function: NN observes state, predicts expected return
 - Action value function: NN oserves state and action, predicts expected return

RL: summary

- Agent observes state in environment and take action following policy
- Feedback: reward and new state
- Agent updates policy and state/action value functions
- Agent observes new state... etc
- NNs can estimate policy and value functions

RL: algorithms & libraries

- NNs can estimate policy and state/action value functions
- REINFORCE:
 - NN for policy $\pi(a_t|s_t; \theta_{\pi})$
 - parameter update by gradient ascent w.r.t (optimal) state value $v^*_{\pi}(s)$
 - this requires full reward information of the whole episode
- Actor-Critic:
 - NN as **Actor** to update policy $\pi(a_t|s_t; \theta_{\pi})$
 - NN as **Critic** to update state value function $V(s_t; \theta_v) = E[G_t | s = s_t]$
 - Update parameters θ_{π} , θ_{V} using gradient ascent from Advantage function $A = R_{i} - V(s_{i}; \theta_{V})$ Cross-entropy over actions

RL for heterotic model building

3 building blocks for heterotic SLMs

- Calabi Yau manifold ${\mathcal M}.$
- Discrete symmetry Γ (for Wilson line GUT breaking).
- Line bundle sum $V = \bigoplus L_a$.
- Explored systematically → 35 000 SLMs Anderson et al (1106.4804,1202.1757,1307.4787)

• Example

RL heterotic SLMs

Heterotic string compactification with three ingredients

- Calabi Yau manifold $\mathcal M.$
- Freely acting discrete symmetry Γ.
- Line bundle sum $V = \bigoplus L_a$. \rightarrow Environment for RL exploration

Keep fixed

- The environment $\{V = \bigoplus L_a\}$ are just integer matrices In our paper, we set up two environments, with actions
 - Stacking: precompiled list of slope stable L_a stacked and then replaced
 - Flipping: initiate randomly and then flip individual entries
 - Inspired by RL of intersecting brane models Halverson–Nelson–Ruehle:1903.11616

RL: implementation and libraries

RL heterotic SLMs

To qualify as a heterotic SLM, the bundle must satisfy physical constraints.

 \rightarrow Translate constraints to reward structure.

RL heterotic SLMs: reward structure

condition	reward
vanishing first Chern class	trivial
vanishing line bundle slope (3.28)	2
index constraint, three fermion generations (6.8)	10^{2}
Bianchi identity (6.4)	10^{5}
no Higgs triplets (6.12)	10^{5}
existence of Higgs doublets (6.12)*	10 ⁶
no antigeneration (6.11)*	107
full stability (6.6)	107

- Topological constraints.
- Some immediate; others need AG;
- Automated: pyCICY, cohomcalg

Environments: Stacking

Precompile list *L* of n_{line} slope stable line bundles with $-3|\Gamma| \leq \text{index}(L_a) \leq 0$ Stack four of these, and adjust L_5 to satisfy $c_1(V) = 0$

 \longrightarrow Constraints 1, 2, 3 are automatic

States: The line bundle sum *V*. Hence $S_t \in \mathbb{Z}^{(5,nProj)}$. **Actions:** Pick $L_a \in L$ and replace one of L_{1-4} . **# of configurations:** $n_{conf} = n_{line}^4$.

Example: $(M_{5302}, q_{max} = 2, |\Gamma| = 2)$ gives $n_{line} = 2890$ and $n_{conf} \approx 7 \cdot 10^{13}$.

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & -1 & -1 & 0 \\ -2 & -1 & 0 & -2 & 5 \\ 0 & -1 & 0 & 2 & -1 \\ 0 & 2 & -2 & 2 & -2 \\ 2 & 2 & 1 & 0 & -5 \end{bmatrix} \xrightarrow{A_t} \begin{bmatrix} -1 & -2 & 0 & 0 & 3 \\ 2 & -2 & -1 & -1 & 2 \\ -2 & 0 & 0 & -2 & 4 \\ 0 & 2 & 0 & 2 & -4 \\ 0 & 0 & -2 & 2 & 0 \\ 2 & 2 & 1 & 0 & -5 \end{bmatrix}$$

Environments: Flipping

No precompiled list, instead "flip" individual charges in L_{1-4} Still adjust L_5 to satisfy $c_1(V) = 0$

 \longrightarrow Constraint 1 is automatic

States: The line bundle sum *V*. Hence $S_t \in \mathbb{Z}^{(5,n\operatorname{Proj})}$. **Actions:** Pick a charge q_i^j and add ± 1 . Thus $A_t \in \{1, ..., 4 \cdot 2 \cdot n\operatorname{Proj}\}$. **# of configurations:** $n_{\operatorname{conf}} = (2 \cdot q_{\max} + 1)^{4 \cdot h^{1,1}}$.

Example: $(\mathcal{M}_{5302}, q_{\max} = 2, |\Gamma| = 2)$ gives $n_{conf} \approx 5 \cdot 10^{16}$.

$$\begin{bmatrix} 1 & 1 & -1 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & -1 & -1 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{A_{t}} \begin{bmatrix} 2 & 1 & -1 & 0 & -2 \\ -1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & -1 & -1 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Stack or Flip?

Stack or Flip?

- Stacking close to human derived strategy of systematic scan
 - Runtime about 50 minutes on 32 cores
 - Moderately outperform random walker (factor 3-20)
 - Gets stuck in local minima \rightarrow low number of unique models.
- Flipping strategy different from systematic scan
 - Runtime about 3.5 hours on 32 cores
 - Rapid increase in performance followed by flattening at late times
 - Significantly outperform random walker (factor 300-1700)
 - Large number of unique models.

RL goes beyond $h^{1,1} = 7$ (unprobed by systematic scans)

run	all	unique
1	3576	2863
2	9577	4451
3	2296	1973
4	3554	2759
5	220071	9289
total	-	14374

R. Schneider PhD thesis, 2022

RL design & transfer learning

- RL is slow to start
- Pretraining agent possible:
 - basic scan, with fewer constraints/rewards
 - smaller set of bundles
- Benefit: pre-trained network could then be applied in full setting

• Transfer learning

- In 2003.04817 used pretrained agent from \mathcal{M}_{5265} on \mathcal{M}_{5452}

Summary

Reinforcement learning:

- Idea: agent learns to win a game (solve an environment) by receiving rewards (pos & neg)
- Versatile method, can cope with large environments (discrete/cont.) and incomplete info
- Govern by Policy, $\pi: S \to A$: given current state, determines action
 - Deterministic/probabilistic; Determined by expected value of action
- State and action value functions: expected return from state/action
- NNs can be used to estimate policy and value functions –> ML libraries ChainerRL, OpenAl gym
- Packages for string/math-related RL https://github.com/robin-schneider/gymCICY https://github.com/ruehlef/ribbon

Plan for afternoon studies

- Reading:
 - F. Ruehle. "Data science applications to string theory", ch 8 https://www.sciencedirect.com/science/article/pii/S0370157319303072
 - R. Schneider "Heterotic Compactifications in the Era of Data Science", ch. 6,7 http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157
 - Heterotic model building with RL: M. Larfors & R. Schneider <u>arXiv:2003.04817</u> S. Abel et al <u>2110.14029</u> <u>2306.03147</u>
- Online tutorials:
 - Intro to RL by Callum Brodie

https://colab.research.google.com/github/callum-ryan-brodie/oxford-ml-physmathschool/blob/main/oxford_ml_physmath_school_notebook_2.ipynb#scrollTo=qDF-j8opXEaH

• <u>RL of heterotic LB models</u> by Robin Schneider https://github.com/robin-schneider/gymCICY/blob/master/agents/Tutorial.ipynb