Lecture 3: ML & string landscape

Reinforcement Learning

Magdalena Larfors, Uppsala University
Nordita Winter School 2024

Summary of lecture 1-2

Lecture 1 Lecture 2

e Universal function approximator ¢ Simple NNs learn tricky

* Supervised learning geometry

(labelled data) * Semi-supervised learning

- SGD, Backpropagation (data+constraints)

e Custom loss functions

6

u T
5

4

Bt

| .

1+

Outline: ML methods for Landscape searches

* Motivating problems
* Finding our Universe in the string theory Landscape

* Reinforcement Learning

* Simple examples

e States and actions
 Rewards and returns
* Goals and policies

* RL finds Standard-like Model (SLM) physics from heterotic line bundles

 Summary, reading and tutorials

String Theory
, Energy scale (Quantum Gravity)

\
J

Set of consistent low-
energy effective
Quantum Field Theories

fin) Swamﬁ)land

= 14N
.\J

.,
/4

Picture source: Palti (19)

String compactifications

* Pick your favourite version of string theory:
M-theory, F-theory, type 11A/IIB, heterotic, ...

* Pick a SUSY-preserving compact geometry to get 4d:
G2 mfd, CY 4-fold, CY 3-fold, toroidal orbifold, SU(3) structure mfd, ...

* Pick extra ingredients so you get the Standard Model (or GUT, ...)
singularities, singular fibers, branes/O-planes, vector bundles, ...

* Then compute couplings, mass terms, stabilize moduli, break SUSY, ...

Many choices to make!

Heterotic compactifications on CYs

* Pick your favourite version of string theory: heterotic Eg X Eg
* Pick a SUSY-preserving compact geometry to get 4d: CY 3-fold X

* Pick extra ingredients for particle physics:
holomorphic vector bundle V' — X w. structure group in Eg

* There are still many choices!

e 7890 CICY 3-folds Candelas et al:88
KS CY 3-folds from toric 4-folds Kreuzer-Skarke:00
473,800,776 reflexive polyhedra, each leading to 1 or more CYs
- 10%?% inequivalent CY 3-folds Demirtas—McAllister—Rios-Tascon:20

* Each CY can be paired with many different vector bundles

* A systematic scan over 10*° models gave 35’000 SU(5) SLMs
Anderson et al 1307.4787

String compactifications

* But why should we construct 1000s of Standard-like Models?
 Surely, one good model is enough to describe our Universe?

* Yes, but “needle in a haystack” = Need good search algorithms
e Statistics of models: what is typical in string theory?
* Swampland: what cannot occur in string theory?

e Constraints are hard — working with large classes of OK models
increase chance of finding a good model (whatever that means)

 Systematic scans are limited by computational resources = try ML

Can we use supervised learning?

e Learn CY topology
 Known from algebraic geometry
* AG methods scale poorly

» Configuration matrix = Image

e Can use s-o0-t-a image
recognition techniques

* Current lead (inception models):

>99% accuracy on h!
He:17, Ruehle:17, Bull-et.al.:18,19, Klaewer—
Schlechter:18, Constantin—Lukas:18, Brodie-
et.al.:19, ML-Schneider:19, Erbin—
Finotello:20, He—Lukas:20, Erbin-et.al.:22; ...

X[8,29] =

T 1
NN = ==

1
0
0
1
0
0
0
0

S oo, OO ~,O

SO, OO~ OO

S~ OO~ O OO

O—R O~ OO oo

S—= R, OO O OO

—_— O OO OO o~

—_— o oo oo ~,O

—_0 OO0 O~ OO

SO R = =OOO

42

Xel|4]5]

b) X[8, 29]

hypersurfaces

1.0

0.8

0.6

0.4

0.2

0.0

Can we use supervised learning?

* Current lead (inception models):
>99% accuracy on h1!

* So this would give (jumping steps)
99% of the Standard Model?

 What does that mean?

X[8,29] =

T 1
NN = ==

S OO O ~, OO~

S oo, OO ~,O

SO, OO~ OO

S~ OO~ O OO

O—R O~ OO oo

S—= R, OO O OO

—_— O OO OO o~

—_— o oo oo ~,O

—_— O OO0 O —=O 0o

SO R = =OOO

- 8,29

Xel|4]5]

b) X[8, 29]

Intro to Reinforcement Learning

Reinforcement Learning @ Games

Blue: Worker, Red: Pitfalls, Green: Exit

Maze layout

Reinforcement Learning

* |[dea: agent learns to win a game
(solve an environment) by
receiving rewards (pos & neg)

e Solves large environments @ /PG oo eee :
g_ | ®,7%) T s
AIphaGo Silver et al (Science, 2018) ‘o0 .

e Learns from imperfect info
OpenAl wins DotA 2 AlphaGo
Berner et al 1912.06680

Reinforcement Learning

Agent
state reward action

\Y i, A

| Rt+l
| — .
' _S.. | Environment

RL: solving a maze

* Environment = states & actions Blue: Worker, Red: Pitfalls, Green: Exit
 States: positions {(1,1),(1,2),...} Maze layout

e Action: 1 step {W,S,E,N}

* Rewards:

* e.g. -1 for each step, -5 for hitting wall,
-10 for pitfall, +100 for exit, ...

* The agent must develop a policy for
which action to take, given the info
available in the current state

* Explore vs exploit

e Try it out in tutorial!

RL: terminology

 Environment, &, is set of states § and set of actions A

* States S = {s;}: possible configurations
(continuous/discrete, finite/infinite)

* Actions A = {a;: S = &} : transitions between states

* Terminal states : no action possible; search ends here
(pitfall or exit of maze)

 Episode: Sequence of states and actions that ends in a terminal state

E =1{(sy,a1),(s3,a3),...,(sp, D)}

RL: terminology

* Policy, m: § = A : given current state, determines action
e Deterministic or probabilistic
* Determined by expected value of action

* Reward: feedback to agent, depends on state and action
e Return (discounted accumulated future reward, depends on policy)

Gy = Reyq + YReyo + . :ZVth+k+1

e Goal: find policy that maximizes return

RL with/without ML: back to the maze

Blue: Worker, Red: Pitfalls, Green: Exit

Maze layout

* Markov decision problem
* Find policy given info of the value of states and actions

* For a small maze, can solve algorithmically
* Try 1: {(1,1;E)} gives G = —10
* Try 2:{(1,1;5),(2,1;E),(2,2;E)} gives G = —1 —y — 10y*

 Collect info of {states, actions, returns} in order to determine policy
* Requires memory
* Unfeasible for large mazes, or more complicated problems

RL: enter the neural nets

* State value function: V_(s) = E(G;|s = s;)
Expected return from current state onward when following policy

* Action value function: q(a,s) = E(G¢ |s = s;,a = a;)
Expected return from picking an action in a given state

* Policy, state value and action value functions are interdependent.

 We seek estimators for best state value function, action value
function, and policy; use neural nets
* Policy: NN observes state, predicts action
 State value function: NN observes state, predicts expected return
e Action value function: NN oserves state and action, predicts expected return

RL: summary

* Agent observes state in
environment and take action
following policy

 Feedback: reward and new state

* Agent updates policy and
state/action value functions

* Agent observes new state... etc

* NNs can estimate policy and
value functions

state

reward

af

:[Agent}

\.

- Environment

|

action
A,

state

RL: algorithms & libraries

';| Agent |

reward
R,

141

‘SHI

g Uiy

R e

* NNs can estimate policy and state/action value functions

* REINFORCE:
* NN for policy m(a;|s¢; 05)

-—
\

Environment]4—

* parameter update by gradient ascent w.r.t (optimal) state value v (s)
* this requires full reward information of the whole episode

* Actor-Critic:
* NN as Actor to update policy m(a;|s¢; 6;;)

* NN as Critic to update state value function V(s¢; 0,) = E|G¢|ls = s¢]

* Update parameters 8., 8y, using gradient ascent from
Advantage function A = R; — V(s;; 6y)
Cross-entropy over actions

action

RL for heterotic model building

3 building blocks for heterotic SLMs

* Example
e Calabi Yau manifold M. C1o 1 1]
10 1 1
* Discrete symmetry I Moo | 1T 10 I =2
. . . 5302 —
(for Wilson line GUT breaking). i i (1) ?

* Line bundlesumV =@ L,. 11 0 1]

* Explored systematically - -1 0 0 0 1
35 000 SLMs 4 -3 -1 0 O
Anderson et al v—| ¢ 0 -1 10
(1106.4804,1202.1757,1307.4787) o o0 0 0 O

o 0 1 0 -1
1 1 0 -2 0 |

NB: configuration encoded in simple integer matrices!

ML-Schneider:2003.04817

R I_ h ete rOt I C S I—I\/I S R. Schneider PhD thesis, 2022

Heterotic string compactification with three ingredients

 Calabi Yau manifold M. — Keep fixed

* Freely acting discrete symmetry . _
* Line bundlesumV =@ L,. -> Environment for RL exploration

* The environment {IV = @ L, } are just integer matrices
In our paper, we set up two environments, with actions

 Stacking: precompiled list of slope stable L, stacked and then replaced

* Flipping: initiate randomly and then flip individual entries
* Inspired by RL of intersecting brane models Halverson-Nelson—Ruehle:1903.11616

RL: implementation and libraries

Input Hidden Output

__

" ReLU ReLU ReLU

" Use A3C:

Asynchronous Advantage
. Actor Critic

' Mnih et al (1602.01783)

" ChainerRL

" Open Al gym

RL heterotic SLMSs

To qualify as a heterotic SLM, the bundle must satisfy physical constraints.

— Translate constraints to reward structure.

RL heterotic SLMs: reward structure

condition reward
vanishing first Chern class trivial
vanishing line bundle slope (3.28) 2
index constraint, three fermion generations (6.8) 107
Bianchi identity (6.4) 10°
no Higgs triplets (6.12) 10°
existence of Higgs doublets (6.12)* 100
no antigeneration (6.11)* 107
full stability (6.6) 10’

Topological constraints.
Some immediate;
others need AG;
Automated:
pyCICY, cohomcalg

Environments: Stacking

Precompile list L of njne slope stable line bundles with —3|I'| < index(L,) <0
Stack four of these, and adjust Ls to satisfy c;(V) =0

—— Constraints 1, 2, 3 are automatic
States: The line bundle sum V. Hence S, € Z(5:nProi)

Actions: Pick L, € L and replace one of Li_4.

of configurations: n.o,s = n'

line-

Example: (Ms302, Gmax = 2,

[| = 2) gives Njne = 2890 and Neons = 7 - 1013,

-1 0 0 0 1] -1 -2 0 0 3]
2 0 -1 -1 0 2 -2 -1 -1 2
2 -1 0 -2 5 A -2 0 0 -2 4

0O -1 O 2 -1
0 2 -2 2 =2
2 2 1 0 -5

NN O O
N ODN
.
N
o

Environments: Flipping

No precompiled list, instead “flip” individual charges in Li_4
Still adjust Ls to satisfy ¢;(V) =0

—— Constraint 1 is automatic

States: The line bundle sum V. Hence S; € Z(5:nProj).
Actions: Pick a charge ¢/ and add +£1. Thus A, € {1,...,4 - 2 - nProj}.

of configurations: neons = (2 Gmax + 1)4"’1’1.

Example: (Ms302, Gmax = 2, || = 2) gives Neonf = 5 - 101°.

1 1 -1 0 -1 2 1 -1 0 -2
-1 0 1 0 0 -10 1 0 O
1 1 0 -1 -1 |A| 1 1 0 -1 -1
1 1 -1 -1 0 1 1 -1 -1 0
-11 0 0 0 11 0 0 0
-1 10 0 O0] | -11 0 0 o0 |

Stack or Flip?

5302 - stacking

2500 4 —— Experiments
—— Rwalkers

2000 A

1500 -

1000 -

of models

500 A

of models

5302 - flipping

17500 A

15000 -

12500 -

10000 A

7500 -

5000 A

2500 A

—— Experiments
—— Rwalkers

Stack or Flip?

e Stacking close to human derived strategy of systematic scan
* Runtime about 50 minutes on 32 cores
* Moderately outperform random walker (factor 3-20)
e Gets stuck in local minima —— low number of unique models.

* Flipping strategy different from systematic scan
* Runtime about 3.5 hours on 32 cores
* Rapid increase in performance followed by flattening at late times
* Significantly outperform random walker (factor 300-1700)
* Large number of unique models.

RL g0es beyond h1’1 =7 (unprobed by systematic scans)

" 1ll1 00000100 07%
1o 10000010 0
1/o 010000010
2001 00100 00 0 1
X18299=1 510100100001
200 01001 00 0 1
200 00111000 0
(20000001 1 1 0],
run all unique
: — X[8.29])
1 3576 2863
N 2 0577 4451
R. Schneider PhD thesis, 2022 ; ! 3 2296 1973
- 4 | 3554 2759
! 5 | 220071 9289
- total - 14374
0.0 05 1.0 1.5 2.0 2.5 3.0

time step leb

RL design & transfer learning

* RLis slow to start * Transfer learning
* Pretraining agent possible: * In 2003.04817 used pretrained
* basic scan, with fewer agent from Mgy 0N Mcyso
constraints/rewards
* smaller set of bundles 5452 - flipping

10% 5 5256 - agent
—— Experiments

* Benefit: pre-trained network o] = o
could then be applied in full]
setting : 1

Summary

Reinforcement learning:

* |dea: agent learns to win a game (solve an environment) by receiving
rewards (pos & neg)

* Versatile method, can cope with large environments (discrete/cont.) and
incomplete info

* Govern by Policy, m: § = A : given current state, determines action
* Deterministic/probabilistic; Determined by expected value of action

* State and action value functions: expected return from state/action

* NNs can be used to estimate policy and value functions —> ML libraries
ChainerRL, OpenAl gym

* Packages for string/math-related RL

https://github.com/robin-schneider/gymCICY
https://github.com/ruehletf/ribbon

Plan for afternoon studies

* Reading:

* F. Ruehle. “Data science applications to string theory”, ch 8
https://www.sciencedirect.com/science/article/pii/S0370157319303072

* R. Schneider “Heterotic Compactifications in the Era of Data Science”, ch. 6,7
http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157

* Heterotic model building with RL:
M. Larfors & R. Schneider arxiv:2003.04817 S. Abel et al 2110.14029 2306.03147

* Online tutorials:

 Intro to RL by Callum Brodie
https://colab.research.google.com/github/callum-ryan-brodie/oxford-ml-physmath-
school/blob/main/oxford_ml_physmath_school_notebook_2.ipynb#scrollTo=qDF-j8opXEaH

* RL of heterotic LB models by Robin Schneider
https://github.com/robin-schneider/gymCICY/blob/master/agents/Tutorial.ipynb

