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Summary lecture 1

* Neural Networks:
universal function approximators

* NNs: parametrized maps
fgl R" - R™

* Train NN = change 6 to reduce loss

e Stochastic Gradient Descent with

Backpropagation (or some refinement)

e Use ML libraries:
PyTorch, JAX, TensorFlow/Keras
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Unsupervised and semi-supervised learning

 Lecture 1: supervised learning
had labelled data (x, y)
trained network using e.g. Ly,sg = %Z(y(xi) — fo (xl-))2

e Universal function approximators
- NN can also predict unknown functions

* Unlabelled data = unsupervised learning: clustering techniques
e.g. heterotic orbifold models mutter et al:18, heterotic line bundle

models otsuka-Takemoto:20, type IIB flux vacua cole-shiu:17,18 ...



Unsupervised and semi-supervised learning

e Sometimes have unlabelled data with known constraints
e.g. the function we want solves known constraint/equation

* In this case can use semi-supervised learning
* Encode constraints as custom (addition to) loss function
* In ML literature called PINN (Physics Informed Neural Networks)

* Examples:
 Numerically solve Navier-Stokes equation
* Compute the Ricci-flat metric on a CY manifold



Outline

e String theory and Calabi-Yau (CY) geometry

* ML of Ricci flat CY metrics

* Data generation

e Semi-supervised learning and custom loss functions
 Comparing architectures



Motivation & problem set-up



String theory and Calabi-Yaus

e String theory: theory of quantum gravity
 String compactifications: connect with 4d particle physics, cosmology
* Topology and geometry of compact dimensions are key

 Calabi-Yau manifolds are popular (compact) example spaces:
e Give SUSY Minkowski vacua (with moduli), used in flux comp’s, ...
* Admit Ricci-flat metric
* Many example manifolds constructed
» Topology well understood (computed in examples)

* The Ricci-flat CY metric gives info on curvature, massive KK modes, ...
Can we compute it in examples?
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Calabi-Yau manifolds: details

* Complex: local coordinates z;, z;
holomorphic top form Q) = dz; Adz, A---Ndz,

e Kahler: metric determined by Kadhler potential K(z, Z)
gdi;s = aiajK» 9dij= G = 0
Kahler form | = % Y g;zdz) AdZ¥
* Come in families parametrized by complex structure/Kdhler moduli
* Satisfy topological restriction (c; = 0 ); unique Ricci-flat CY metric



Calabi-Yau manifolds: algebraic construction

* Non-compact CYs are not hard
e Build compact CYs from simpler ambient spaces (compact, complex, Kahler)

X y

x? +y%+z4=1in R3 78 + Z2+ 73+ Z2+ 72=0 in P*

* Many examples collected in databases: _ _
CICY 3-folds candelas et al:88, CY hypersurfaces in toric spaces Kreuzer-Skarke:00, ...
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Addition: why is P* a simpe ambient choice?

 Want compact, complex space: can’t use C% as it is non-compact

e P4 space of complex line through origin of C2+1

P?: {(zq, Z, - Zg41) € C¥Yi(2y, 22, o 2g11)~A(21, 22, - Zg41)}

* Pictorially, easier to visualize real projective space, e.g.
RP? is hemisphere of 2-sphere in R with antipodal
identification on equator

* For complex projective space, exists map to sphere
Pl ~S?%/U(1); P* ~ S°/U(1)

B
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L

(p,q,7)

/ =% ~
3o

(=p,—q,—T1)

P4 have “FS metric” which is basically the round metric of sphere

- given this, P* is rather simple
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CY manifolds from simpler ambient spaces

e CICY 3-folds candelas et al:88 e CY from KS list Kreuzer-Skarke:00, ...

* Ambient: cpl projective spaces ¢ Ambient: toric variety
PMx P2 x,  P"'m given by lattice polytope

We use the (relative) simplicity of the ambient space to compute things on CY
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CY manifolds and Ricci flat metrics Calabi:54, Yau:78

* Let X be an n-dimensional compact, complex, Kahler manifold with
vanishing first Chern class.
Then in any Kahler class []], X admits a unique Ricci flat metric g y.

* Problem: there is no analytical expression for g y.
* Impose Ricci-flatness: solve 4" order PDE for Kahler pot. This is hard.



Ricci-flat CY metrics Calabi:54, Yau:78

* Let X be an n-dimensional compact, complex, Kahler manifold with
vanishing first Chern class.

* Then in any Kahler class [J], X admits a unique Ricci flat metric g.y.
* There is no analytical expression for g y.

But on CY spaces, we know more! Kahler form J-y ~ g ysatisfies
* Jevy =]+ 55¢ same Kahler class; ¢ is a function

* Joy Aoy Aoy =k QAQ  complex Monge-Ampere equation
k constant on X: 2"¢ order PDE for ¢



Ricci-flat CY metrics Calabi:54, Yau:78

* Let X be an n-dimensional compact, complex, Kahler manifold with
vanishing first Chern class. Then in any given Kahler class [J], X admits
a unique Ricci flat metric g.y.

* There is no analytical expression for g.y.

Jl We can compute these in examples!

Kahler forW
* Joy =] F 00¢ /sme/éhler class; ¢ is a function

* Joy Aoy Aoy =k QAQ  complex Monge-Ampere equation
Kk constant on X: 2" order PDE for ¢
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Setting up the problem:

Find Ricci flat CY metric gcy <= find Jcy that solves MA equation

Jey AN dey A Jey —kQAQ
where K Is some complex constant.

Numerical method: Sample large set of random points on CY.
* Compute ) and a reference J at all points

* Solve MA eq. numerically for Joy = ] + 00¢
 Check approximation: does MA eq hold and is Ricci tensor 0?



Numerical CY metrics —a longstanding quest

@ Donaldson algorithm

Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al: 10, ...,

@ Energy functionals

Headrick—Nassar:13, Cui—Gray:20, Ashmore—Calmon—He—Ovrut:21, ...

@ Machine learning

Ashmore—He—Ovrut:19, Douglas—Lakshminarasimhan—Qi:20,
Anderson—Gerdes—Gray—Krippendorf-Raghuram—Ruehle:20, Jejjala—Mayorga—Pena:20
L arfors-Lukas-Ruehle-Schneider:21, 22, Ashmore—Calmon—He—Ovrut:21,
Berglund—Butbaia—Hibsch—Jejjala—Mayorga Penha—Mishra—Tan:22,
Gerdes—Krippendorf:22...



Numerical CY metrics —a longstanding quest

@ Donaldson algorithm

Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al: 10, ...,

@ Energy functionals

Headrick—Nassar:13, Cui—Gray:20, Ashmore—Calmon—He—Ovrut:21, ...

@ Machine learning

Ashm https://github.com/yidiq7/MLGeometry TensorFlow/Keras

Ande 1a:20 ,
Larfo| https://github.com/pythoncymetric/cymetric  TensorFlow/Keras

Bergl Mathematica & SAGE

Gerde https://github.com/ml4physics/cyjax JAX




Machine Learning implementation
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ML implementation

* Create data sample

* Train ML model with points sampled from CY
(at given point in moduli space)

* The trained NN is the (approximation of) the Ricci flat metric

* Test accuracy of prediction



Error measures used to measure dCCUracy

After training, evaluate performance (on separate test set):
does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:
QAN Q

1 1
o — . R — R r| -
VOICY /X (Jpr)3 VOICY /X ‘ i ‘

using Monte Carlo integration for any function f

dVO|CY 1 : dVO|CY
/de0|cyf:/X v dAf:NZW;ﬂpi with — w; = —

1 — K

Pi



Creating data -- Point generators
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Point generators

We need

* random set of points on CY

e sampled w.r.t. known measure dA
.50 wWe can

e determine global metric of CY
(not enough to work locally, in a patch)

e compute integrals
(e.g to check accuracy)
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Point generators

Start simple: Quintic X:p =0 c P*
Sample 2 points on P*; connect & intersect

* Repeat M times
~ 5M random points on X

* Shiffman-Zelditch theorem:
points distributed w.r.t. FS measure on X

Douglas et. al: hep-th/0612075




Point generators

Quintic X: D = 0 C [P)4 Douglas et. al: hep-th/0612075
 Sample 2 points on P%; connect & intersect

* Shiffman-Zelditch theorem:
points distributed w.r.t. FS measure on X

* Generalizations:
CICY Douglas et.al 0712.3563, ...,

Kreuzer-Skarke
ML, Lukas, Ruehle, Schneider 2111.01436 & 2205.13408
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ML for CY metrics




ML models: Set-up and training

Moduli
Point sample

input layer

Architectural choices

* What to predict
CY metric or Kahler pot?

* Encode constraints in NN or loss?
(global, complex, Kahler...)

Then train

* Minimize loss functions
And check performance
* Error measures

27



So what loss functions should we use?



Loss functions encode math constraints

* Train the network to get unknown Ricci-flat metric (in given Kihler class)

e Use semi-supervised learning
1. Encode mathematical constraints as custom loss functions
2. Train network (adapt layer weights) to minimize loss functions

e E.g. satisfy Monge-Ampere eq ~ minimize Monge-Ampere loss

1 det gy
kQAQ

ouc|

n

* Depending on metric ansatz, need more or less loss functions.



More loss functions

 Satisfy Monge-Ampere eq ~ minimize MA loss
* OR Set Ricci tensor to zero ~ minimize Ricci loss (requires derivatives)

Also might need to check

* manifold-ness: match metrics on patch overlaps (requires derivatives)

e Kahler-ity: d]pr = 0 (requires derivatives)

* Preserve Kahler class Jpr ~JFs (only needed when CY has several Kahler moduli)

Architectural choices will determine which loss functions we need
Computing derivatives wrt input — (ab)use ML library’s autodiff implementation!



ML implementations




ML model architectures

| | 1) —
1. Learn Donaldson’s H matrix . Model |71
Anderson et al 2012.04656, Gerdes et al learnable parameters ¢ () l
2211.12520 Z ]
B

&N

2012.04797, Larfors et al 2111.01436 & earnable parameters
2205.13408 , Berglund et al 2211.09801

2. Learn Kahler potential w
Anderson et al 2012.04656, Douglas et al — { Model J —
I 0

3. Learn metric
Anderson et al 2012.04656, Jejjala et al W [
|

2012.15821, Larfors et al 2111.01436 &

Model . _
2205.13408 Z , 8ab

earnable parameters
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ML implementation—two paths

Algebraic CY metrics

* Expand K.y in polynomial basis

* Ki(z,2) =~ ¥ In Hyps®sP

* ML Hermitian matrix H for given
moduli

 Compute Kahler pot from H

Machine Learning CY metrics

* ML model searches freely
for CY metric

* Training objective: minimize loss

e Control evolution via NN
architecture and loss functions

[typically need all loss functions]



1. Learn Donaldson’s H matrix

Neural Net

s Model A /

Llearnable parameters @
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1. Learn Donaldson’s H matrix

Donaldson’s algorithm:
lterative algorithm (no ML) that gives Kahler potential

_ 1 _7
Ki(z,2) = - X InHgps®s”
* s, monomials of order k (sections of holomorphic line bundle)
* H: N}, XN, Hermitian matrix, “balanced metric”

* Larger k gives larger set of s, = more accurate K
* Problem: Curse of dimensionality, need to use discrete symmetries



1. Learn Donaldson’s H matrix

Donaldson’s algorithm: algebraic K from H

NN that predicts H

* Input layer: complex structure moduli

e OQutput layer: H matrix

* Predicted H + s, at points = K in spectral basis = algebraic metric
 Either supervised learning

* or semi-supervised learning with MA/Ricci loss function
Anderson et al 2012.04656, Gerdes et al 2211.12520, cyjax
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Example: supervised learning of H  aderson etai 2012 0sss

* Quintic, 1 cpl modulus

 k = 3 — 35-dim basis of sections s,

* Input Re Y, Im 1, Abs ¢

e Qutput Re, Im of H components; compare with Donaldson
* FF NN, 3 layers, ADAM opt. o of the test set

Algorithm

w

(\V)

=

—_

Layer | Number of Nodes | Activation | Number of Parameters 0 BN Donaldson
input 3 - - B NN predictio
hidden 1 100 leaky ReLLU 400 s O B nearest value
hidden 2 1000 leaky ReLLU 101 000
hidden 3 1000 leaky ReLLU 1001 000 0. | |
output N ,? identity 1000x N, ,3 + N, lf
Y

0.

o
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2. Learn Kahler potential directly

(" )

Model

learnable parameters 6

- _J




2. Learn Kahler potential directly

Douglas et al 2012.04797, holomorphic and bihomogeneous NN

* Input: points on CY
e Qutput: prediction for K

* Must ensure K is globally defined
Guaranteed if expand in section basis (ponaldson, Headrick-Nassar)
Or have embedding NN (holomorphic or bihomogeneous)

* Bihomogeneous NN:
Input x, = x,X, = Re,Im ; Act.fcn: o:x - x?

K =logW%ogo--00go0oW(x,x},)
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Example: semisupervised learning of K

* Semi-supervised learning - L L
 MAPE version of MA loss |

* After training:
NN = K - approximate CY
metric

* Gradient blow-ups/deep NN

Douglas et al 2012.04797, mlgeometry

. The training curves for Equation (3) with 1) = 0.5, trained with Adam optimizer and
MAPE loss. The data for k2_500_500_500_1 was recorded every 10 epochs.
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3. Direct ML of metric

(i<

4 )
Model
dearnable parameters 0 g




3. Direct ML of metric: neural network

* Input: point on CY
Quintic: input layer has 10 nodes = Re(x; ), Im(x;)

e Qutput: metric prediction - different Ansatze possible
9 (or 1) node

e Semi-supervised learning using custom loss function

 After training:

NN - approximate CY metric
Anderson et al 2012.04656, Larfors et al 2205.13408, cymetric




3. Direct ML of metric: neural network

* Different Ansatze possible for metric prediction g,
Encode more/less of math knowledge

* In the cymetric package, can choose between

Name Ansatz
Free Jpr — gNN
Additive gpr = JFS 1+ gNN
Multiplicative, element-wise | gpr = grs + grs © gNN
Multiplicative, matrix gpr = gFS T gFS " gNN
¢-model Ypr = gFs T 009 | Same as learning K




Lya

o-measure

Example: direct learning of g
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Larfors et al 2205.13408
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d) Lg - Validation

/
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h) o-measure vs R-measure

® mult ®

© add ®e
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Fermat quintic ,FF NN, fully connected, GELU, 64-64-64 network
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More on cymetric package

the package I've worked most with ©

* Most general:
* point generators for CICYs and KS Cys
* loss function for Kahler class preservation

* Makes most of ML (knows less math)
* Agnostic about CY geometry apart from loss functions
* PINN — physics constraints are enforced via custom loss functions

* Want other metric? Just replace some loss function!
 But be aware that all constraints are “soft”!



Summary ML implementations of CY metrics

Can use NN to model H matrix, Kahler potential or CY metric

In all cases, NN is very simple:

* Feed-forward, fully connected NNs with 2-3 layers

* Custom loss functions and/or activation functions encode physics
* Trainable on laptops, in minutes, for simple CYs (quintic)



Pro/con for architecture choices

Learning H or K Learning metric

Pro Pro

* Kahler e Always learn 9 comps of 3*3

* Globally defined Hermitian metric

* Donaldson’s alg: * Generalizes |
convergence as k — o (e.g. non-Kahler SH metric)

Con Con

* Scaling (of spectral basis) * Not Kahler

» No generalization beyond Kihler ¢ Not globally defined



Architecture: further developments

 Benchmark study on cubic CY in P? (a.k.a. the torus)
Ahmed & Ruehle 2304.00027
Found accuracy improves w larger training set, more nodes, longer training

* Improve accuracy with architecture by going global

* cymetric with spectral (=bihomogeneous) layer
Berglund et al 2211.09801

* Symmetries, equivariant NNs and Geometric Deep Learning
in progress w Moritz Walden and Yacoub Hendi
* Improve accuracy (and training time) by going ultra-local

Metric flows and Neural tangent kernel
Halverson Ruehle 2310.19870
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Summary of this lecture

* Simple NNs can learn Ricci flat CY metrics
e Mathematical constraints: encoded in NN or in loss functions

ML packages for CY metrics applies to all CICY and Kreuzer-Skarke list
at given point in moduli space
architecture differs

 Lots of things (mostly) left to do:
* Moduli-dependent CY metrics

* Applications in physics:
swampland conjectures, HYM equation, wrapped branes

* Go beyond CY: G2 metrics, G-structure manifolds, ...
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Plan for afternoon studies

* Reading:

* R. Schneider “Heterotic Compactifications in the Era of Data Science”, ch. 3, 5
http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157

* L. Anderson, J. Gray and M. Larfors, arXiv:2312.17125

* Online tutorials:

* Intro to CY metric optimization by Ed Hirst
https://github.com/edhirst/OxfordCYTutorial/tree/main

* \VIL of Ricciflat CY metrics by Yidi Qi

https://colab.research.google.com/drive/1Z-
jzToRkrTHayB83JOUKogbbBGO5Zdho?usp=sharing

e Tutorials in the CYmetric, MLgeometry, cyJAX gitHub repo’s




Additional slides



Point generators for KS CY manifolds - details

ML, Lukas, Ruehle, Schneider 2111.01436 & 2205.13408

e Can we relate ambient toric variety A to projective spaces?
Yes!

Use sections of line bundle dual to Kahler cone divisors;
recall nef divisors are base-point free

* So Shiffman—Zelditch applies and quintic algorithm generalizes.

Sections sj(a) of the toric Kahler cone generators J, ~ coordinates of P«
Use Shiffman—Zelditch on P

A 1,1
Express CY 3-fold as non-complete intersection in A = (X)g:l Pre

Intersect ~~ sample of random points on CY distributed wrt FS measure.




cymetric: KS CY example

htt =2, h*! = 80 CY from the Kreuzer-Skarke list
« Ambient space is P1 - A — P? w. toric coordinates (x,, ..., X4)

* CY hypersurface: p(xg, ..., x,) = 0 (80 terms; select randomly)
* 2 Kahler cone generators J, ; ] =t +t,),
 Morphisms to P! and P> using HY(J,)

* Point generation ~ 1 hour (generic cpl structure moduli, t, = 1).



KS CY example

e« h1 =2 h*1 = 80 Kreuzer-Skarke

s a) Loss functions . b) Volume
, .
\ MA 040
\ Kclass
‘\ 21 035
#1 o PAWAAINAIIAAL oo
3
ﬁ
R | o 025
\l ‘ " i a > 19 o}
02 AAAA AN -
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i V‘v’ "\"’ l,‘r‘\”iv( W l‘\'"\‘"‘\"w\u'\.}h W.J r"‘,\‘\ﬁv‘\, 18
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epochs epochs

0

2

C) 0 measure

40 6

epochs

* Toric ¢p-model, default loss, 200 000 points
* NN width 256, depth 3, GELU, batch (128, 10000), SGD w. momentum

100

d) Ricci measure

epochs
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Traditional methods

* Approximate K.y via algebraic expansion in polynomial basis
1 5
Ky(z,z) = Ez In HaEpapb

* Hermitian matrix H to be computed

Donaldson algorithm Energy functional

* H, : fixed point of iteration * H;, : minimum of functional
scheme encoding MA equation

* Slow convergence at given k * Fast convergence at given k

* Proven K — K,y ask — o



Traditional methods

* Approximate K-y via algebraic expansion in polynomial basis
1 5
K.(z,2) = EE In H, 5p%p?

 Hermitian matrix H to be computed

* Problem: polynomial basis dim N;, grows with k, and H~N,f
On quintic:

N, = ( k‘k“l ) _ ( ::é) — 5 15, 35,70, 125,205, 315, ...

* Use discrete symmetries to cut down N. Only works for some CYs



