
Lecture	2:	ML	CY	metrics
Simple	NNs	for	tricky	geometry

Magdalena	Larfors,	Uppsala	University
Nordita Winter	School	2024



Summary	lecture	1

2

• Neural	Networks:	
universal	function	approximators
• NNs:	parametrized	maps	
𝑓":	ℝ& → ℝ(

• Train	NN	=	change	𝜃 to	reduce	loss
• Stochastic	Gradient	Descent	with	
Backpropagation	(or	some	refinement)
• Use	ML	libraries:	
PyTorch,	JAX,	TensorFlow/Keras

Visualization - Gradient descent
good learning rate



Unsupervised	and	semi-supervised	learning

• Lecture	1:	supervised	learning
had	labelled	data	(x,	y)
trained	network	using	e.g.	𝐿+,- =

/
0
∑ 𝑦 𝑥4 − 𝑓" 𝑥4

6�
�

• Universal	function	approximators
à NN	can	also	predict	unknown	functions
• Unlabelled data	à unsupervised	learning:	clustering	techniques
e.g.	heterotic	orbifold models	Mutter	et	al:18,	heterotic	line	bundle	
models Otsuka-Takemoto:20,	 type	IIB	flux	vacua Cole-Shiu:17,18 …

3



Unsupervised	and	semi-supervised	learning

• Sometimes	have	unlabelled data	with	known	constraints
e.g.	the	function	we	want	solves		known	constraint/equation

• In	this	case	can	use	semi-supervised	learning	
• Encode	constraints	as	custom	(addition	to)	loss	function
• In	ML	literature	called	PINN (Physics	Informed	Neural	Networks)

• Examples:	
• Numerically	solve	Navier-Stokes	equation	
• Compute	the	Ricci-flat	metric	on	a	CY	manifold

4



Outline

• String	theory	and	Calabi-Yau (CY)	geometry
• ML	of	Ricci	flat	CY	metrics
• Data	generation
• Semi-supervised	learning	and	custom	loss	functions
• Comparing	architectures

5



Motivation	&	problem	set-up

6



String	theory	and	Calabi-Yaus

• String	theory:	theory	of	quantum	gravity
• String	compactifications:	connect	with	4d	particle	physics,	cosmology
• Topology	and	geometry	of	compact	dimensions	are	key	
• Calabi-Yau manifolds	are	popular	(compact)	example	spaces:
• Give	SUSY	Minkowski vacua (with	moduli),	used	in	flux	comp’s,	…
• Admit	Ricci-flat	metric
• Many	example	manifolds	constructed
• Topology	well	understood	(computed	in	examples)

• The	Ricci-flat	CY	metric gives	info	on	curvature,	massive	KK	modes,	…
Can we compute it	in	examples?

7



8

Set	of	consistent	low-
energy	effective	
Quantum	Field	Theories

String	Theory	
(Quantum	Gravity)Energy	scale

Figure 1: A schematic illustration of the space of (apparently) self-consistent e↵ective quantum
field theories. The sub-set which could arise from string theory is the string Landscape, while
all the other theories are in the string Swampland.

Self-consistency becomes much less powerful at low energies, even for theories which include
gravity. In string theory this manifests as the existence, within our current understanding, of a
huge number of resulting low-energy e↵ective theories. Each such theory is constructed about a
di↵erent vacuum of string theory, and the rich vacuum structure of the theory, the so-called
String Theory Landscape, then translate into a large spectrum of e↵ective theories. However, it
is important to not confuse this richness of structure with a complete absence of constraints. The
resulting set of theories still picks out only a subset of all the possible apparently self-consistent
e↵ective theories. The use of apparently here means that there is nothing manifestly wrong
with the e↵ective theory, but an inconsistency would manifest should one try to complete it in
the ultraviolet. The idea of the String Theory Swampland was introduced in [1] as a way to
quantify and refer to these residual low-energy constraints.1 More precisely:

The Swampland can be defined as the set of (apparently) consistent e↵ective field theories
that cannot be completed into quantum gravity in the ultraviolet.

So string theory might lead to a large Landscape of e↵ective low-energy theories, but there is
an even larger Swampland of e↵ective theories that cannot come from string theory. This is
illustrated in figure 1. Note that we phrased the definition of the Swampland using a general
notion of quantum gravity, rather than specifically string theory. For simplicity of notation, we
will rarely distinguish between such a general quantum theory of gravity and string theory, but
it is natural to define the Swampland in this more general sense.

Of course, the abstract concept of the Swampland has no useful meaning unless we understand
how to distinguish between e↵ective field theories that are in the Landscape from those in the

1See also [2] for similar ideas at the same time.

4

Picture	source:	Palti (19)



Calabi-Yau manifolds:	details

• Complex:	 local	coordinates	𝑧4, 𝑧;̅̅
holomorphic	top	form	Ω = 𝑑𝑧/ ∧ 𝑑𝑧6 ∧ ⋯∧ 𝑑𝑧&

• Kähler: metric	determined	by		Kähler potential	𝐾(𝑧, 𝑧̅)
𝑔4;̅ = 	𝜕4𝜕;̅𝐾,			𝑔4E= 	𝑔F;̅̅ = 0

Kähler form	𝐽 = 4
6
	∑𝑔4IJ 𝑑𝑧E ∧ 𝑑𝑧̅I

J�
�

• Come	in	families	parametrized	by	complex	structure/Kähler moduli
• Satisfy	topological	restriction	(𝑐/ = 0	);	unique Ricci-flat	CY	metric

9



Calabi-Yau manifolds:	algebraic	construction
• Non-compact	CYs	are	not	hard	
• Build	compact CYs	from	simpler ambient	spaces	(compact,	complex,	Kähler)

𝑥6 + 𝑦6+ 𝑧6=1	in	ℝN 𝑍PQ + 𝑍/Q+ 𝑍6Q+ 𝑍NQ+ 𝑍RQ=0	in	ℙR

• Many	examples	collected	in	databases:	
CICY	3-folds	Candelas	et	al:88,	CY	hypersurfaces	in	toric spaces	Kreuzer-Skarke:00,	…

10



Addition:	why	is	ℙR a	simpe ambient	choice?	

• Want	compact,	complex	space:	can’t	use	ℂU as	it	is	non-compact
• ℙU space	of	complex	line	through	origin	of	ℂUV/
ℙU: 𝑧/, 𝑧6, … 𝑧UV/ 	∈ ℂUV/: (𝑧/, 𝑧6, … 𝑧UV/ ~𝜆(𝑧/, 𝑧6, … 𝑧UV/)}

• Pictorially,	easier	to	visualize	real	projective	space,	e.g.	
ℝℙ6 is	hemisphere	of	2-sphere	in	ℝN	with	antipodal	
identification	on	equator
• For	complex	projective	space,	exists	map	to	sphere	
ℙ/	~	𝑆6/U(1)	;	ℙR	~	𝑆\/U(1)		
ℙU have	“FS	metric”	which	is	basically	the	round	metric	of	sphere
à given	this,	ℙR is	rather	simple		

11



CY	manifolds	from	simpler	ambient	spaces

• CICY	3-folds	Candelas	et	al:88
• Ambient:	cpl projective	spaces

ℙ&]×ℙ&_×. . ℙ&a

• CY	from	KS	list	Kreuzer-Skarke:00,	…
• Ambient:	toric variety	
given	by	lattice	polytope

12

We	use	the	(relative)	simplicity	of	the	ambient	space	to	compute	things	on	CY



CY	manifolds	and	Ricci	flat	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	
Then	in	any	Kähler class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔ef.

• Problem:	there	is	no	analytical	expression	for	𝑔ef.	
• Impose	Ricci-flatness:	solve	4th order	PDE for	Kähler pot.	This	is	hard.

13

Calabi:54,	Yau:78



Ricci-flat	CY	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	
• Then	in	any	Kähler class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔ef.
• There	is	no	analytical	expression	for	𝑔ef.	

But	on	CY	spaces,	we	know	more!	Kähler form	𝐽ef ↝ 𝑔efsatisfies	
• 𝐽ef = 𝐽 + 		𝜕�̅�𝜙	 same	Kähler class;	𝜙 is	a	function

• 𝐽ef ∧ 𝐽ef ∧ 𝐽ef = 𝜅	Ω ∧ Ωj	 complex	Monge-Ampere	equation
𝜅	 constant	on	𝑋:	2nd order	PDE	for	𝜙

14

Calabi:54,	Yau:78



Ricci-flat	CY	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	Then	in	any	given	Kähler class	[𝐽],	𝑋	admits	
a	unique	Ricci	flat	metric	𝑔ef.
• There	is	no	analytical	expression	for	𝑔ef.	

Kähler	form	𝐽ef ↝ 𝑔efsatisfies	
• 𝐽ef = 𝐽 + 		𝜕�̅�𝜙	 same	Kähler class;	𝜙 is	a	function
• 𝐽ef ∧ 𝐽ef ∧ 𝐽ef = 𝜅	Ω ∧ Ωj	 complex	Monge-Ampere	equation

𝜅	 constant	on	𝑋:	2nd order	PDE	for	𝜙

15

We	can	compute	these	in	examples!

Calabi:54,	Yau:78



Setting	up	the	problem:

Numerical method:	Sample large set	of random points on	CY.	
• Compute Ω and	a	reference	𝐽 at	all	points
• Solve	MA	eq.	numerically	for	𝐽ef = 𝐽 + 𝜕�̅�𝜙	
• Check	approximation:	does	MA	eq hold	and	is	Ricci	tensor	0?

16

Machine Learning

Find Ricci flat CY metric gCY () find JCY that solves MA equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄

where  is some complex constant.

Plan:
Point sample  Neural Network; Train using math knowledge  predict metric

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 22 / 40



Numerical	CY	metrics	– a	longstanding	quest

17

Calabi-Yau Manifolds: approximating the metric

Lacking analytic expression for gCY (or JCY ), develop numerical approximations:

Donaldson algorithm

Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al:10, ...,

Energy functionals

Headrick–Nassar:13, Cui–Gray:20, Ashmore–Calmon–He–Ovrut:21, ...

Machine learning

Ashmore–He–Ovrut:19, Douglas–Lakshminarasimhan–Qi:20,

Anderson–Gerdes–Gray–Krippendorf–Raghuram–Ruehle:20, Jejjala–Mayorga–Peña:20 ,

Larfors-Lukas-Ruehle-Schneider:21, 22, Ashmore–Calmon–He–Ovrut:21,

Berglund–Butbaia–Hübsch–Jejjala–Mayorga Peña–Mishra–Tan:22,

Gerdes–Krippendorf:22...

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 8 / 40



Numerical	CY	metrics	– a	longstanding	quest

18

Calabi-Yau Manifolds: approximating the metric

Lacking analytic expression for gCY (or JCY ), develop numerical approximations:

Donaldson algorithm

Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al:10, ...,

Energy functionals

Headrick–Nassar:13, Cui–Gray:20, Ashmore–Calmon–He–Ovrut:21, ...

Machine learning

Ashmore–He–Ovrut:19, Douglas–Lakshminarasimhan–Qi:20,

Anderson–Gerdes–Gray–Krippendorf–Raghuram–Ruehle:20, Jejjala–Mayorga–Peña:20 ,

Larfors-Lukas-Ruehle-Schneider:21, 22, Ashmore–Calmon–He–Ovrut:21,

Berglund–Butbaia–Hübsch–Jejjala–Mayorga Peña–Mishra–Tan:22,

Gerdes–Krippendorf:22...

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 8 / 40

https://github.com/yidiq7/MLGeometry TensorFlow/Keras

https://github.com/pythoncymetric/cymetric	 TensorFlow/Keras
Mathematica	&	SAGE

https://github.com/ml4physics/cyjax JAX



Machine	Learning	implementation

Point	
sample

ML	model
(neural	net)

Metric	
prediction

Loss	functions Error	measures

Training	 w	Backprop

Moduli

19



ML	implementation

• Create data	sample

• Train ML	model with points sampled from	CY	
(at	given	point in	moduli space)

• The	trained	NN	is	the	(approximation	of)	the	Ricci	flat	metric

• Test	accuracy	of	prediction

20



Error	measures	used	to	measure	accuracy

21

Error Measures

After training, evaluate performance (on separate test set):

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

� =
1

VolCY

Z

X

����1� 
⌦ ^ ⌦

(Jpr)3

���� , R =
1

VolCY

Z

X
|Rpr| .

using Monte Carlo integration for any function f

Z

X
dVolCYf =

Z

X

dVolCY
dA

dA f =
1

N

X

i

wi f |pi with wi =
dVolCY
dA

|pi

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 26 / 40



Creating	data	-- Point	generators

22



Point	generators

We	need	
• random	set	of	points	on	CY	
• sampled	w.r.t.	known	measure	𝑑𝐴
..so	we	can	
• determine	global	metric	of	CY	
(not enough	to	work	locally,	in	a	patch)
• compute	integrals	
(e.g to	check	accuracy)

23



Point	generators
Start	simple:	Quintic 		𝑋: 𝑝 = 0	 ⊂ ℙR		
Sample	2	points	on		ℙR;	connect	&	intersect
• Repeat	𝑀 times	
⤳ 5𝑀 random	points	on	𝑋
• Shiffman-Zelditch theorem:	
points	distributed	w.r.t.	FS	measure	on	𝑋

Douglas	et.	al:	hep-th/0612075

24



Point	generators
Quintic 		𝑋: 𝑝 = 0	 ⊂ ℙR		Douglas	et.	al:	hep-th/0612075
• Sample	2	points	on		ℙR;	connect	&	intersect
• Shiffman-Zelditch theorem:	
points	distributed	w.r.t.	FS	measure	on	𝑋

• Generalizations:	
CICY		Douglas	et.al 0712.3563,	...,	
Kreuzer-Skarke
ML,	Lukas,	Ruehle,	Schneider	2111.01436	&	2205.13408

25



ML	for	CY	metrics

26



ML	models:	Set-up	and	training

Architectural	choices
• What	to	predict
CY	metric	or		Kähler pot?
• Encode	constraints	in	NN	or	loss?
(global,	complex,	Kähler…)

Then	train	
• Minimize	loss	functions
And	check	performance
• Error	measures

27

Moduli
Point	sample

𝑔ef, 𝐾



So	what	loss	functions	should	we	use?

28



Loss	functions	encode	math	constraints

• Train	the	network	to	get	unknown Ricci-flat	metric	(in	given	Kähler class)
• Use	semi-supervised	learning
1.	Encode	mathematical	constraints	as	custom	loss	functions
2.	Train	network	(adapt	layer	weights)	to	minimize	loss	functions
• E.g.	satisfy	Monge-Ampere	eq⤳	minimize	Monge-Ampere	loss

• Depending	on	metric	ansatz,	need	more	or	less	loss	functions.

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =

����

����1�
1

det gpr
⌦ ^ ⌦̄

����

����
n

,

LdJ =
X

ijk

||<cijk ||n + ||=cijk ||n , with cijk = gi j̄,k � gkj̄,i and gi j̄,k = @kgi j̄

Ltransition =
1
d

X

(s,t)

���
���g (t)

pr � T(s,t) · g (s)
pr · T †

(s,t)

���
���
n

, T(s,t) transition matrix

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
,

LK-class =
1
h11

h11X

i=1

����

����µJFS(Li )�
Z

X

(Jpr)
n�1Fi

����

����
n

.

Magdalena Larfors Learning CY metrics 4 May 2022 13 / 32

29



More	loss	functions
• Satisfy	Monge-Ampere	eq⤳	minimize	MA	loss
• OR Set	Ricci	tensor	to	zero	⤳	minimize	Ricci	loss	(requires	derivatives)

Also	might	need	to	check
• manifold-ness:	 match	metrics	on	patch	overlaps	(requires	derivatives)
• Kähler-ity:	 𝑑	𝐽qr = 0 (requires	derivatives)
• Preserve	Kähler class	 𝐽qr	~𝐽s, (only	needed	when	CY	has	several	Kahler moduli)

Architectural	choices	will	determine	which	loss	functions	we	need
Computing	derivatives	wrt input	– (ab)use	ML	library’s	autodiff implementation!

30



ML	implementations

31



ML	model	architectures

1. Learn	Donaldson’s	H	matrix	
Anderson	et	al	2012.04656,	Gerdes et	al	
2211.12520

2. Learn	Kähler potential
Anderson	et	al	2012.04656,		Douglas	et	al	
2012.04797,	Larfors et	al	2111.01436	&	
2205.13408	,	Berglund	et	al	2211.09801	

3. Learn	metric	
Anderson	et	al	2012.04656,	Jejjala et	al	
2012.15821,	Larfors et	al	2111.01436	&	
2205.13408

32

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10



ML	implementation– two	paths

Algebraic	CY	metrics

• Expand	𝐾ef	in	polynomial	basis

• 𝐾I 𝑧, 𝑧̅ =
/
I
∑ ln𝐻wxJ𝑠w�̅�x

J�
�

• ML	Hermitian	matrix	𝐻 for	given	
moduli
• Compute	Kähler pot	from	𝐻

Machine	Learning	CY	metrics

• ML	model	searches	freely	
for	CY	metric
• Training	objective:	minimize	loss
• Control	evolution	via	NN	
architecture	and	loss	functions
[typically	need	all	loss	functions]

33



1.	Learn	Donaldson’s	H	matrix

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

Neural	Net

34



1.	Learn	Donaldson’s	H	matrix

Donaldson’s	algorithm:	
Iterative	algorithm	(no	ML)	that	gives	Kähler potential

𝐾I 𝑧, 𝑧̅ =
/
I
∑ ln𝐻wxJ𝑠w�̅�x

J�
�

• 𝑠w monomials	of	order	𝑘	(sections	of	holomorphic	line	bundle)
• 𝐻:	𝑁I×𝑁I Hermitian	matrix,	“balanced	metric”	
• Larger	𝑘 gives	larger	set	of	𝑠w àmore	accurate	𝐾
• Problem:	Curse	of	dimensionality,	need	to	use	discrete	symmetries

35



1.	Learn	Donaldson’s	H	matrix

Donaldson’s	algorithm:	algebraic	𝐾 from	𝐻

NN	that	predicts	𝐻
• Input	layer:	complex	structure	moduli	
• Output	layer:	𝐻 matrix	
• Predicted	𝐻 +	𝑠| at	points	à 𝐾 in	spectral	basis	à algebraic	metric
• Either	supervised	learning	
• or	semi-supervised	learning	with	MA/Ricci	loss	function	

Anderson	et	al	2012.04656,	Gerdes et	al	2211.12520,	cyjax

36



Example:	supervised	learning	of	𝐻
• Quintic,	1	cpl modulus
• 𝑘 = 3	 → 35-dim	basis	of	sections	𝑠|
• Input	Re	𝜓,	Im 𝜓,	Abs	𝜓
• Output	Re,	Im of	𝐻 components;	compare	with	Donaldson
• FF	NN,	3	layers,	ADAM	opt.	

37

Anderson	et	al	2012.04656

Figure 10: Clustering of elements in H for  = 10. Top row: Orange clusters correspond
to vanishing elements, blue clusters correspond to non-vanishing values. Bottom rows:

Close-up view of the blue clusters. The number of vertical lines is in close relation to the
number of equivariant components.

Layer Number of Nodes Activation Number of Parameters
input 3 – –

hidden 1 100 leaky ReLU 400
hidden 2 1000 leaky ReLU 101 000
hidden 3 1000 leaky ReLU 1 001 000
output N2

k identity 1000⇥N2
k + N2

k

Table 1: Neural network architecture for the neural network that learns the  -dependence
of H.

C.1 Supervised training with Donaldson’s algorithm

In designing and training the NN, we found that the result is not very sensitive to hyper-
parameter tuning and does not require complicated network architectures. For this paper,
we chose a simple feed-forward NN with 3 hidden layers of dimensions 100, 2000 and 2000
with (leaky) ReLU activation, cf. Table 1. The input is (the real part, imaginary part,
and absolute value of)  and the output are the N2

k independent (real and imaginary)
components of H.8

8
We ran experiments where we added (the real and imaginary part of) powers of  to the input.

However, for large  , positive powers tend to produce rather large features. So one should either normalize

them to unit variance (since we draw  randomly from a flat prior, it will already have roughly zero mean),

which is problematic if one wants to extrapolate beyond the training set. For fractional powers, one will

have to choose a branch or include all branches as features. Since the observed accuracy improvements are

rather small, we ended up using Re( ), Im( ), and | | as features.

34

𝜓



2.	Learn	Kähler potential directly

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

38

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10



2.	Learn	Kähler potential	directly

• Input:	points on	CY			
• Output:	prediction	for	𝐾
• Must	ensure 𝐾 is	globally defined
Guaranteed if expand in	section basis	(Donaldson,	Headrick-Nassar)
Or	have embedding NN	(holomorphic or	bihomogeneous)
• Bihomogeneous NN:	

Input		𝑥w → 𝑥w𝑥x → 𝑅𝑒, 𝐼𝑚 ;			Act.	fcn:	𝜎: 𝑥 → 𝑥6	
• 𝐾 = log	𝑊U ∘ 𝜎 ∘ ⋯ ∘ 𝜎 ∘ 𝑊/(𝑥w𝑥x)

39

Douglas	et	al 2012.04797,	holomorphic	and	bihomogeneous NN



Example:	semisupervised learning	of	𝐾
• Semi-supervised	learning
• MAPE	version	of	MA	loss
• After	training:	
NN	à 𝐾à approximate	CY	
metric

• Gradient	blow-ups/deep	NN	

Douglas	et	al 2012.04797,	mlgeometry

40

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Appendix A. Plots and tables

(a) (b)

Figure 1: Distance to singular CY as function of  ,� in Equation (34) (Left) and  ,↵ in Equa-
tion (35) (Right)

Figure 2: The training curves for Equation (3) with  = 0.5, trained with Adam optimizer and
MAPE loss. The data for k2 500 500 500 1 was recorded every 10 epochs.

21



3.	Direct	ML	of	metric

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

41



3.	Direct	ML	of	metric:	neural	network

• Input:	point on	CY
Quintic:	input	layer has	10	nodes	=	𝑅𝑒(𝑥�	), 𝐼𝑚 𝑥�
• Output:	metric	prediction	- different	Ansatze possible
9	(or	1)	node	
• Semi-supervised	learning	using	custom	loss	function
• After	training:	
NN	à approximate	CY	metric	

Anderson	et	al	2012.04656,	Larfors et	al	2205.13408,	cymetric

42



3.	Direct	ML	of	metric:	neural	network

Name Ansatz

Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, element-wise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS + gFS · gNN

�-model gpr = gFS + @@̄�

Table 1: Di↵erent Ansätze for the neural network prediction of the Ricci-flat metric.

together with a set of constraints that the neural network output (that is, the metric) has to satisfy.
Hence, the task is more akin to physics informed self-supervised learning or optimization than classical
’supervision’ with given input-output pairs. We check how well the output meets these constraints
by constructing error measures that encode them. Importantly, given the split of the initial data, the
quality of the output can be assessed on both the training and validation sets. For the validation set,
this check is performed by applying the trained network to the validation data.

From this brief summary, it is clear that designing a NN to perform a certain task involves choosing
a number of hyperparameters, that specify the network’s properties. For fully connected NNs, this
amounts to specifying the width and depth of the network, which activation functions to use, and the
number of batches and epochs. More advanced network components, such as convolutional or dropout
layers (see, for example, Ref. [29] for a recent discussion), require additional hyperparameters. For our
task, previous studies [32–34] have shown that a simple fully connected NN exhibits good performance.
Consequently, we focus on this setting, leaving studies involving more advanced NN architectures for
the future. We build the networks using TensorFlow [40], an ML library with functionalities that suit
our needs. In particular, TensorFlow allows to construct the NNs in a sequential manner, and has
di↵erentiation functions that allow us to compute derivatives with respect to the input data.

4.2 Network architectures

The basic idea underlying machine learning of CY metrics is to use a NN whose associated functions
f✓ represent metrics on the manifold. In other words, the NN input consists of a point p 2 X on the
CY manifold and its output represents a metric g(p) at this point. There are a number of concrete
realizations of this idea. Since CY three-folds X are complex manifolds, their metrics g(p) at each point
p 2 X can be written, relative to a local choice of complex coordinates, as a Hermitian 3 ⇥ 3 matrix.
The first, and most obvious, approach is then to let the NN predict the nine independent entries (three
real entries on the diagonal, and three complex entries on the o↵-diagonal) of this matrix. While this
is possible, it does not take advantage of the mathematical knowledge we have about CY manifolds.
For example, equation (2.2) shows that the CY metric is given by an exact correction to some reference
Kähler metric gFS. Moreover, by constructing CY manifolds as a hypersurfaces or complete intersection
in an ambient space, one can construct the metric gFS explicitly by pullback from the ambient space A.

The cymetric package realizes five choices for how the metric gpr predicted by the NN is related to
the function gNN that the NN actually represents. These possibilities are summarized in Table 1. The
first and most obvious choice, gpr = gNN, has been included for reference but is by no means the
optimal one. A metric is required to be non-singular and this condition can easily be violated for a
randomly initialized or stochastically trained NN. A NN which ’accidentally’ represents a singular or

16

• Different	Ansatze possible	for	metric	prediction	𝑔qr
Encode	more/less	of	math	knowledge
• In	the	cymetric package,	can	choose	between

Same	as	learning	K	

43



Example:	direct	learning	of	g

44

Larfors et	al	2205.13408

Fermat	quintic ,FF	NN,	fully	connected,	GELU,	64-64-64	network



More	on	cymetric package

• Most	general:	
• point	generators	for	CICYs	and	KS	Cys
• loss	function	for	Kahler class	preservation

• Makes	most	of	ML	(knows	less	math)
• Agnostic	about	CY	geometry	apart	from	loss	functions
• PINN	– physics	constraints	are	enforced	via	custom	loss	functions	

• Want	other	metric?	Just	replace	some	loss	function!
• But	be	aware	that	all	constraints	are	“soft”!	

45

the	package	I’ve	worked	most	with	J



Summary	ML	implementations	of	CY	metrics

Can	use	NN	to	model	H	matrix,	Kahler potential	or	CY	metric

In	all	cases,	NN	is	very	simple:
• Feed-forward,	fully	connected	NNs	with	2-3	layers
• Custom	loss	functions	and/or	activation	functions	encode	physics
• Trainable	on	laptops,	in	minutes,	for	simple	CYs	(quintic)

46



Pro/con	for	architecture	choices

Learning	H	or	K
Pro
• Kähler
• Globally	defined	
• Donaldson’s	alg:	
convergence	as	𝑘 → ∞

Con
• Scaling	(of	spectral	basis)
• No	generalization	beyond	Kähler

Learning	metric
Pro
• Always	learn	9	comps	of	3*3	
Hermitian	metric
• Generalizes	
(e.g.	non-Kähler SH	metric)

Con
• Not	Kähler
• Not	globally	defined	

47



Architecture:	further	developments

• Benchmark	study	on	cubic	CY	in	ℙ6 (a.k.a.	the	torus)
Ahmed	&	Ruehle 2304.00027
Found	accuracy	improves	w	larger	training	set,	more	nodes,	longer	training

• Improve	accuracy	with	architecture	by	going	global
• cymetric with	spectral	(=bihomogeneous)	layer
Berglund	et	al	2211.09801	

• Symmetries,	equivariant NNs	and	Geometric	Deep	Learning
in	progress	w	Moritz	Walden	and	Yacoub Hendi

• Improve	accuracy	(and	training	time)	by	going	ultra-local
Metric	flows	and	Neural	tangent	kernel
Halverson	Ruehle 2310.19870

48



Summary	of	this	lecture

• Simple	NNs	can	learn	Ricci	flat	CY	metrics	
• Mathematical	constraints:	encoded	in	NN	or	in	loss	functions
• ML	packages	for	CY	metrics	 applies	to	all	CICY	and	Kreuzer-Skarke list

at	given	point	in	moduli	space
architecture	differs

• Lots	of	things	(mostly)	left	to	do:	
• Moduli-dependent	CY	metrics	
• Applications	in	physics:	
swampland	conjectures,	HYM	equation,	wrapped	branes	

• Go	beyond	CY:	G2	metrics,	G-structure	manifolds,	...

49



Plan	for	afternoon	studies

• Reading:	
• R.	Schneider	“Heterotic	Compactifications	in	the	Era	of	Data	Science”,	ch. 3,	5	

http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1649343&dswid=-2157

• L.	Anderson,	J.	Gray	and	M.	Larfors,	arXiv:2312.17125	

• Online	tutorials:
• Intro	to	CY	metric	optimization	by	Ed	Hirst
https://github.com/edhirst/OxfordCYTutorial/tree/main
• ML	of	Ricciflat	CY	metrics		by	Yidi Qi
https://colab.research.google.com/drive/1Z-
jzToRkrTHayB83J0UKogbbBGO5Zdho?usp=sharing
• Tutorials	in	the	CYmetric,	MLgeometry,	cyJAX gitHub repo’s



Additional	slides

51



Point	generators	for	KS	CY	manifolds	- details

• Can	we	relate	ambient	toric variety	A	to	projective	spaces?
Yes!	
Use	sections	of	line	bundle	dual	to	Kähler cone	divisors;	
recall	nef divisors	are	base-point	free

• So	Shiffman–Zelditch applies	 and	quintic algorithm generalizes.

52

Point Generators

Creating a point sample on KS CY 3-fold

Can we relate ambient toric variety A to projective spaces?
=) and so apply Shi↵man–Zelditch theorem, and generalise the CICY algorithm.

Sections s
(↵)
j of the toric Kähler cone generators J↵ ⇠ coordinates of Pr↵

Use Shi↵man–Zelditch on Pr↵

Express CY 3-fold as non-complete intersection in Â ⇠=
Nh1,1

↵=1 Pr↵

Intersect  sample of random points on CY distributed wrt FS measure.

Magdalena Larfors (Uppsala U.) CY Metrics from NNs September 2023 18 / 47

ML,	Lukas,	Ruehle,	Schneider	2111.01436	&	2205.13408



cymetric:	KS	CY	example

ℎ/,/ = 2,	ℎ6,/ = 80	CY	from	the	Kreuzer-Skarke list
• Ambient	space	is	ℙ/ → Α → ℙN w.	toric coordinates	(𝑥P, … , 𝑥R)

• CY	hypersurface:	𝑝 𝑥P, … , 𝑥R = 0 (80	terms;	select	randomly)
• 2	Kähler cone	generators 𝐽w ;									𝐽 = 𝑡/𝐽/ + 𝑡6𝐽6
• Morphisms	to	ℙ/ and	ℙQ using	𝐻P(𝐽w)

• Point	generation	∼ 1	hour	(generic	cpl structure	moduli,	𝑡w = 1).	

53



KS	CY	example

• ℎ/,/ = 2,	ℎ6,/ = 80	Kreuzer-Skarke

• Toric 𝜙-model,	default	loss,	200	000	points
• NN	width	256,	depth	3,	GELU,	batch	(128,	10000),	SGD	w.	momentum

54



Traditional	methods

Donaldson	algorithm
• 𝐻I :	fixed	point	of	iteration	
scheme	
• Slow	convergence	at	given	𝑘
• Proven	𝐾	 → 𝐾ef as	𝑘	 → ∞

Energy	functional
• 𝐻I :	minimum	of	functional	
encoding	MA	equation	
• Fast	convergence at	given	𝑘

55

• Approximate	𝐾ef	 via	algebraic	expansion	in	polynomial	basis

𝐾I 𝑧, 𝑧̅ =
1
𝑘
�ln𝐻wxJ𝑝w�̅�x

J
�

�
• Hermitian	matrix	𝐻 to	be	computed



Traditional	methods

• Approximate	𝐾ef	 via	algebraic	expansion	in	polynomial	basis

𝐾I 𝑧, 𝑧̅ =
1
𝑘
�ln𝐻wxJ𝑝w�̅�x

J
�

�
• Hermitian	matrix	𝐻 to	be	computed
• Problem:	polynomial	basis	dim	𝑁I	grows	with	𝑘,	and	𝐻~𝑁I6
On	quintic:	

= 5, 15, 35, 70, 125, 205, 315,…	

• Use	discrete	symmetries	to	cut	down	𝑁I.	Only	works	for	some	CYs

56

Figure 9: Scatter-plot comparing real and imaginary parts of the affine coordinates of
the variety in 2 defined by z30 + z31 + z32 + 10 z0z1z2 = 0, generated using either sampling
algorithm introduced in Section A. The values all lie in the affine patch Û0 defined by
|z1|, |z2|  |z0| = 1.

B Algebraic metrics and Donaldson’s algorithm

B.1 Constructing the monomial basis

When the basis of the line bundle O n+1(k), given by all homogeneous monomials defined
in the homogeneous projective coordinates, is restricted to X, the basis has to be reduced
for k � n+2. The reason is that on X the defining polynomial , p vanishes, which means
that all polynomials containing p (a degree n+2 polynomial) must be removed to obtain
a basis. Formally, the basis is defined as

C[z0, . . . zn+1]k /
⌦
p (~z)

↵
, (B.1)

where
⌦
p (~z)

↵
= p (~z)C[z0, . . . zn+1]k�(n+2) . (B.2)

Another perspective on this is that each linearly independent polynomial in
⌦
p (~z)

↵
can be

rewritten to express one of the constituent monomials in terms of the remaining monomials.
We get the following expression for the number of basis sections of OX(k):

Nk =

 
k + 4

k

!
�

 
k � 1

k � 5

!
. (B.3)

The second term is precisely the number of sections that become linearly dependent under
pullback. (We follow the convention that a binomial coefficient with negative entries is
zero).

To make this clearer, consider k = 6, n = 3, and p (~z) =
P

i z
5
i +  

Q
i zi. A basis of

hp (~z)i is then given by multiplying p with the basis {z0, z1, z2, z3, z4} of C[z0, . . . , z4]1.
Since p vanishes, the following relations are generated

zj

0

@
X

i

z5i +  
Y

i

zi

1

A = 0 8j . (B.4)

30


