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1 Introduction

The quantum eraser was proposed as a thought experiment in the 1980s and has undergone many
variations and experimental verifications throughout the decades. It owes its relevance to the fact that it
touches on many of the cornerstones of fundamental quantum mechanics in a simple scenario which can
be studied without complicated mathematics, for example with the language of quantum information.

Figure 1: Schematic view of a simple quantum eraser setup based on a Mach-Zehnder interferometer.
A and B label arms inside the interferometers but also entrance and exit paths. Linear polarizers (LP) A
and B can make the two arms more distinguishable, whereas LP C can erase the distinguishability.

The first concept it allows us to explore is quantum interference. The probability of an event, for example
the observation of a photon at a certain output port of an interferometer, like in Fig. 1, may depend on
different configurations of the quantum system, such as passing through either arm of said interferometer.
From the standpoint of classical probability theory, one would expect this probability to be simply the
sum of the probabilities of the alternative configurations. However, observations show that this is not
the case: there is an additional interference term, which also depends on the phase between the different
configurations. In the interferometer example, this can be controlled by lengthening or shortening one of
the arms with respect to the other. Although classical wave mechanics can explain this phenomenon,
known well before the dawn of quantum physics, the language of the latter is better equipped to study
it in depth and understand its consequences.

Quantum probability theory associates amplitudes to different configurations: they can take on complex
values and thus be influenced by phase terms. The probabilities of the configurations are the squared
norm of the corresponding amplitudes (Born’s rule), from which the interference term emerges. For
example, suppose a photon passes through a Mach-Zehnder interferometer (MZI): its quantum state
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can be described as a superposition of the two configurations corresponding to passing through each of
the two arms |A⟩ , |B⟩:

|ψ1⟩ =
1√
2
(|A⟩+ |B⟩) . (1)

Here, the amplitudes are equal to 1√
2

, which happens if the MZI uses an ideal 50:50 beam splitter (BS).
We then consider that the |B⟩ arm is slightly longer than the |A⟩ arm, so as to induce a phase term
eiφ, which is inserted into the state as |ψ2⟩ = 1√

2

(
|A⟩+ eiφ |B⟩

)
. Finally, after the recombination beam

splitter, the state can be described as:

|ψ3⟩ =
1
2

((
1 + eiφ

)
|A⟩+

(
1 − eiφ

)
|B⟩

)
. (2)

If a detector is inserted in the exit path |B⟩, the probability of finding the photon there is the squared
norm of the |B⟩ component of |ψ3⟩:

Pr(det.) =
∣∣∣∣1
2

(
1 − eiφ

)∣∣∣∣2 =
1
2
(1 − cos φ) , (3)

which shows an interference term 1
2 cos φ.

But this is not all! Interference is strictly connected to the indistinguishability between the two configura-
tions. With the described system there is no way to ascertain whether the photon traveled through arm
|A⟩ or |B⟩ inside the MZI. What would happen if we made these two options more distinguishable? We
could, for instance, insert linear polarizers (LPs) in the two arms and align them with orthogonal polar-
izations |H⟩ and |V⟩. In this way, we would bind the arms with polarization |A⟩ ↔ |H⟩ , |B⟩ ↔ |V⟩,
and we would obtain final state:∣∣ψ′

3
〉
=

1
2
√

2

((
|H⟩+ eiφ |V⟩

)
⊗ |A⟩+

(
|H⟩ − eiφ |V⟩

)
⊗ |B⟩

)
. (4)

Here, we are using a state that has norm lower than 1 to reflect the the fact that there is a non-trivial
probability that the photon does not pass through the LPs. With this state, one can easily see that the
squared norm of the |B⟩ component no longer shows an interference term. Even though we are not
actually measuring the polarization (but only the exit path), the simple fact that the two configurations
are distinguishable makes the interference disappear:

Pr(det.) =
1
4

. (5)

Finally, we arrive at the erasure phenomenon. It is possible to recapture the interference by erasing the
distinguishability between the configurations. In the example we are working on, this distinguishabil-
ity is mediated by the polarization components |H⟩ and |V⟩, which can be made indistinguishable by
observing the complementary |D⟩ = 1√

2
(|H⟩+ |V⟩) component. Indeed, if we insert a LP aligned with

|D⟩ in front of the detector, the probability of observing the photon is

Pr(det.) =
1
8
(1 − cos φ) . (6)

Moreover, perfect distinguishability and complete indistinguishability are not the only options. There is
a continuum between the two, and it can be shown that the more distinguishable the two arms are, the
less visible the interference term is.

In the experiment, we will not only focus on the quantum eraser, but also familiarize with tools that
are commonly used in quantum optics. In particular, we will work with a source of photon pairs and
observe the effect that limited temporal coherence has on the interference visibility. While we will only
use the former to improve the quality of our results and to get a taste of how light behaves at the single-
photon level, we will actually study the latter and characterize it in detail.

When light has a short temporal coherence length, its ability to interfere is hindered. In the above formulas,
we have assumed that lengthening one arm of the interferometer means multiplying a phase term eiφ
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to the component that corresponds to that arm. But this would be true only if the light was described
as an ideal monochromatic plane wave. In reality, this is never the case: light always has a finite energy
uncertainty. One of the consequences of this is that the phase difference between two delayed portions
of the same light wave is not fixed but fluctuates: the larger the delay, the larger the fluctuations. Sim-
plifying a bit, we could say that the phase φ does not take on a single value, but has a variance. When
we observe the interference pattern, we necessarily integrate for some amount of time, during which
the phase changes, and this smears the interference term until we no longer see it. In the experiment,
we will measure this by observing the effect that different arm unbalances have on the interference.

2 Experimental setup

Figure 2: Scheme of the setup. BS: beam splitter;
LP: linear polarizer; HWP: half-wave plate; BBO:
beta barium borate.

Figure 3: Photo of the setup.

Figures 2 and 3 depict and show the entire experimental setup.

Although sources of single photons are commercially available, they are very expensive and still far from
perfect. Therefore, we will use a custom-built source of photon pairs based on spontaneous parametric
down conversion (SPDC). The photons in each pair can in principle display entanglement, but we will not
use this: we will only use the temporal correlation between the photons in each pair to improve noise
rejection.

The SPDC process is mediated by the interaction between a pump light field and a nonlinear material, in
this case a beta barium borate (BBO) crystal. Some of the pump photons are probabilistically converted
into pairs of photon at twice the wavelength, due to conservation of energy. In our case, we pump
the crystal with a laser at approximately 405 nm, obtaining photons at roughly 810 nm. The photons
in each pair are emitted at the same time, so it is easy to identify them and distinguish them from
spurious events (photons from different pairs or background noise) by measuring the time of arrival at
two detectors and discarding cases that are too far apart in time. This technique, coincident detection,
improves the quality of the results and allows us to tolerate a large amount of environmental light. The
photons are detected by avalanche photodiodes and their electrical signals are converted into (digital)
time-of-arrival measures by a timetagger.

The photons are emitted at an angle of about 3◦ with respect to the pump direction and travel towards
detector T and BS 1. For this experiment, detector A and the transmitted path after BS 1 are unused
and cam be ignored. Since we use the setup also for other experiments, we deemed it impractical to
remove these elements. The photons that are reflected by BS 1 travel to the heart of the setup, which is
a Michelson interferometer.

The geometry of Michelson interferometers is that of a cross, as depicted in Fig. 4. Light enters the
interferometer through a BS (labeled 2 in our case) and travels in two arms. At the end of each, it is
reflected by a mirror, and exits through the same BS. A detector is usually placed at the exit port of
the BS which does not coincide with the entrance (detector B in our case). The relative phase between
the arms can be changed by moving one of the mirrors, remembering that the optical path is changed
by twice the amount that the arm is lengthened (because light travels back and forth). In our case, the
mirror in the B arm is mounted on a linear stage.
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Figure 4: Schematic view of a Michelson interferometer.

3 Operating the setup

It is very important to obey the following safety rules when a laser source is on:

• Do not look directly at the laser beam! Never!

• Always wear protective goggles (which are provided by the lab).

• Switch on the warning light that signals that the laser is on to those who are outside of the lab.

• Do not wear reflective objects such as rings, necklaces, or watches.

Turn on the pump laser with the switch on its mount and the switch on the controller. Set the laser
current to 32 mA using the wheel on the controller and then enable the output by turning the key and
pressing the button close to it.

Turn on detectors T and B using the switches on their side. Detector A is not used in this experiment
and can be kept off. When detectors are on and the cap is removed, the main lights of the laboratory
should be off, while the dimmer, secondary lights can be kept on. Therefore, turn off the main lights and
then remove the cap from detectors T and B.

Turn on the timetagger by connecting its USB cable to the computer.

During some portions of the experiment you will also use an alignment laser and a led source. These
are both powered via USB and the former has an easy-to-find power switch.

The linear stage can be moved with a coarse adjuster, fine adjuster, and piezoelectric motor, which is
controlled via software. In this experiment, you will not touch the coarse adjuster, but will operate
the fine one (total range 300 µm across six revolutions) and the piezo (total range 20 µm). See Fig. 5 to
identify the handles.

To operate the piezoelectric motor, you must first turn on the piezo controller and the strain gauge
reader with their switches. Then, commands are sent via the Thorlabs Educational Kit software. In the
Michelson tab, you can prepare a scan measurement that correlates the position of the piezo with the
coincidence rate. However, changing the starting position of the scan moves the piezo even if the scan is
not initiated. After turning the devices on, click on Calibrate Stage in the Michelson tab. Figure 6 shows
a screenshot of the Michelson tab of the software.

All data is acquired via the aforementioned software, which already processes the time-of-arrival mea-
sures into more useful information such as the frequency of coincident detections. Data is saved in a
human-readable text format, and you will be tasked to write some code in the language of your prefer-
ence to properly analyze it. Note that the separators used in the text file are not those that are expected
by usual analysis programs. Although it would be easy to prevent this issue by changing some set-
tings at the operating system level, we chose to keep them like this to remind you that data format
is a common nuisance in lab experiments and we encourage you to fix this problem in your analysis
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Figure 5: Photo of the linear stage adjusters. Figure 6: Screenshot of the Michelson tab.

code. You will be given hints and code snippets (in Python) during the lab. In addition, you will be
given a spreadsheet that you can edit on the lab computer to log measurement results and perform a
preliminary analysis of the data.

4 Preliminary alignment

Before the experiment proper, we take some steps to align the setup.

1. Temporarily block the pump laser with a detector card or any non-reflective obstacle.

2. Remove LP C from its position by unscrewing it from the table. Place it somewhere safe where it
does not interact with the light.

3. Check that HWP S is set at 0◦ and LPs A and B are both set at 90◦.

4. Place the cap on detector B.

5. Place a white screen (that you will be given) between beam splitter 2 and detector B, where LP C
previously was.

6. Insert the LED source in its post-holder and block it so that it shines light (after being connected to
the computer to get power) towards BS 2. You should see a wide red light spot on the screen. The
LED source has a very short temporal coherence length.

7. Set the piezo motor at 10 µm and log the position of the other adjusters of the linear stage.

8. Move slightly the fine piezo adjuster. What do you see on the screen?

9. Move slightly the kinematic screws on mirror A (and only mirror A!). What do you see on the
screen?

10. Try to align the kinematic screws on mirror A and the position of the fine adjuster so that the screen
does not show fringes, and small movements of the fine adjuster result in large intensity swings.

11. After you have completed these measurements, remove the LED source from the setup, remove
the white screen, unscrew the cap from detector B, and remove the block on the pump laser path.
Do not reinsert LP C yet.

In your report, give a brief explanation of what you have seen when moving the fine adjuster and the
kinematic screws.

5 Coincidence settings

We define a coincident detection as a pair of detection events that happen at detectors T and B within
a short time, but we have not clearly defined how short yet. Moreover, we have to consider that the
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photons travel different distances to get to the two detectors, and there could be further delays in the
electronic chain downstream of the diodes, therefore we must add a systematic delay to the time-of-
arrival measures of one detector to compensate for this.

The Delay Adjust tab of the software allows to set the coincidence window and then scan different values
of the delay. After changing the settings, the Alignment tab can be used to observe the coincidence rate,
and the GRA tab can be used to acquire and save the coincidence rate for some time. With these tools,
we can choose the best value for the delay and the coincidence window.

1. Block arm B of the Michelson interferometer with a detector card.

2. In the Delay Adjust tab, scan the different delays with a short coincidence window, like 1 ns. Use a
range between −8 ns and 4 ns and an exposure time of 1 s. If the graph seems too noisy, increase the
exposure time and scan again. When you are satisfied, save the data to file. Log in the spreadsheet
the value ∆t of the delay between detectors B and T that maximizes the coincidence rate, and set
it in the appropriate field in the software (Delay B to T).

3. Move to the GRA tab of the software and acquire the detection rate for 10 s. Save the acquired data
and log in the spreadsheet the coincidence rate and the single count rates at detectors B and T.

4. In the Delay Adjust tab, set the Delay B to T to ∆t′ = ∆t + 20 ns. Acquire data again in the GRA
tab, save it to file, and log the same results as before in the spreadsheet. Compare the previously
obtained coincidence and single detection rate (also saved by the GRA tab) with the ones you just
acquired. What is the difference? These are accidental coincidences, caused by photons that are
not generated in the same SPDC event or by background light.

5. For each value of the coincidence window width between 2 ns and 6 ns at 1 ns steps, acquire and
save the detection rates when the delay is set to ∆t (meaning that you are observing true and
accidental coincidences) and when it is set to ∆t′ (so as to observe only accidental coincidences).
Log the detection rates in the spreadsheet, which calculates for you the signal-to-noise ratio (true
to accidental coincidence rate) for each value of the window width.

6. During data analysis, plot the coincidence rates and SNR against the window width. Compare the
accidental coincidences rate with its expected value based on the formula Racc = RBRTτ where
RB, RT are the single detection rates in detectors B and T, and τ is the coincidence window width.

7. Choose a width that provides a good SNR and does not reduce too much the coincidence rate. Set
it in the Delay Adjust tab of the software.

8. After you have completed these measurements, remove the block from arm B of the Michelson
interferometer.

6 Coherence measurement

We now want to measure the coherence length of the SPDC photons, which strongly depends on the
wavelength filters that are installed in front of the detectors. We will measure different interferograms.
For each, you should find maximum and minimum values of the coincidence rates Cmax, Cmin, and
calculate the visibility:

V =
Cmax − Cmin
Cmax + Cmin

(7)

While in the lab, you can do this approximately by rough observation of the data and with the help of
the spreadsheet, but when you analyze the data at home you should write software to fit the pattern
with a sine wave to find better estimates of maximum and minimum, and calculate V based on those.

1. Log the position of all adjusters of the linear stage. Check that both arms of the interferometer are
unblocked.

2. In the Michelson tab of the software, perform a scan between 9 µm and 11 µm with a discretization
step of 70 nm. You should see a interference pattern, with coincidence rates oscillating with a
period of about 400 nm. Can you figure out why this is the period? This is the typical interferogram
that we will measure in this experiment. Log in the spreadsheet the maximum and minimum
observed values for the coincidence rate and save the acquired data to file with the software. This
file includes the position of the piezo and the coincidence rate for each position.
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3. Repeat the previous point for different positions of the fine adjuster in the [−60,+50]µm range
around the initial position, with 10 µm steps. Remember that it is not easy to read the number of
revolutions of the fine adjuster handle, so it is important that you count them when operating it.
Moreover, the file does not save the position of the fine adjuster, therefore it is important that you
associate each file you save with that datum (e.g., you can include the position of the fine adjuster
in the file name).

4. Observe in the spreadsheet the position of the fine adjuster that provided the highest visibility, log
it, and place the fine adjuster in that position.

Note that the spreadsheet plots the visibility against the approximate position of the linear stage. You
should see that the visibility decreases as you move further away from the initial position (which should
be the point of maximum interference, if the preliminary alignment section of the experiment went
smoothly). When you analyze the data at home, you should also plot the coincidence rate against the
position. Remember that you have to offset the positions recorded in the file with the fine adjuster
position that you set manually. You should clearly see that the amplitude of the oscillations decreases as
you move further away from the initial position. In data analysis, measure also the temporal coherence
length, i.e., the difference in optical path length that decreases the visibility by a factor of 1/e.

7 Quantum eraser measurements

We finally get to the most scientifically interesting part of the experiment! Again, we will measure
different interferograms. This time we will not move substantially the linear stage, and only operate the
piezoelectric motor around the point of maximum visibility. We will change the orientation of the LPs
and of HWP S.

For each setting (listed below) you should perform a standard measurement procedure:

• In the Michelson tab of the software, perform a scan between 9 µm and 11 µm with a discretization
step of 20 nm and save the result to file. In the lab, log the maximum and minimum observed
values Cmax and Cmin, from which V is calculated. At home, analyze the interferogram via software
to fit it to a sine wave and find better estimates.

• Block alternately arms A and B, to measure the coincidence rates CB and CA. Use the GRA tab
to acquire and save a 10 s run for each, and log the results in the spreadsheet. Then unblock both
arms.

You can set the optical elements with the following procedure.

1. Check that HWP S is set at 0◦ and LPs A and B are both set at 90◦. Perform a standard measurement
procedure.

2. Rotate LP A to 0◦. Perform a standard measurement procedure.

3. Block alternately the two arms of the Michelson interferometer, and find an angle α of HWP S that
balances the coincidence rate. Then, rotate HWP S to α, LP A to 0◦ and LP B to 90◦ and perform a
standard measurement procedure.

4. Insert LP C between beam splitter 2 and detector B. Orient it so that the dial faces the detector. To
align it, block momentarily the pump laser with a detector card, put the cap on all detectors, insert
the alignment laser, and observe its reflection on the LP. Then, with HWP S at angle α, LP A at
0◦ and LP B at 90 degree, block alternately the two arms of the Michelson interferometer, to find
an angle β of LP C that balances the coincidence rate. Finally, with LP C at β, perform a standard
measurement procedure.

5. Perform a standard measurement procedure for different angles of LP C in the [0, 90]◦ range at
steps of 15◦.

In your report, you should comment each of these interferograms and try to explain what influences V.
Specifically for point 5, calculate also the distinguishability D = 2 · max(CA ,CB)

CA+CB
− 1 and M =

√
V2 + D2.

The variable D describes how well the measurement operated by LP C is able to distinguish between
the two arms. Plot V, D, M against the LP angle and try to explain their relation.
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