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Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

2 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

3 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

4 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

5 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

6 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Motivation

Motivation: despite tremendous success, quantum field theory is
not fully satisfactory as a fundamental framework for physics:

no rigorous formalization of interacting theories
dependent on fixed background space-time
compromised operationality and relationality

Goal:

operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

7 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Plan

1 Preliminaries

2 Reference frames

3 Frame-relative descriptions

4 Restriction and localization

5 Frame transformations

6 Further perspectives

8 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned
with GPT frameworks):

States are density operators S(H) ⊂ T (H)sa,

Observables are positive operator-valued measures (POVMs)

E : F(Σ) → B(H),

giving rise to probability distributions via Born rule:

µE
ω : F(Σ) ∋ X 7→ tr[ωE(X)].
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Operational equivalence

Set of available operators may be constrained O ⊂ B(H). Then

ω ∼O ω′ iff tr[ωA] = tr[ω′A] for all A ∈ O,

O-operational state space:

S(H)/∼O⊂ T (H)sa/∼O .

We have: [
span(O)cl]

∗
∼= T (H)/∼O,

which extends the usual states/operators duality (O = B(H)):

[B(H)]∗ ∼= T (H).
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What is an operational quantum reference frame?

Intuition: coordinates are abstractions of physical systems
1 Reference frames can be (re)oriented. Operationally speaking,

they should be equipped with group action on system’s state
space, and (covariant) frame observable measuring orientation.

2 Relativity of measurement/observation. The operationally
meaningful observables depend on the choice of the reference
frame = measuring instrument. They should be defined on
composite systems, (gauge-)invariant and compatible with
choice of frame observable.

3 Universality of quantum mechanics. Physical systems are
modelled by Hilbert space-based quantum mechanics.
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Quantum reference frames

Quantum reference frame (for G) is a triple R = (HR,UR,ER):

Hilbert space HR

group action UR : G → B(HR)
uni

covariant POVM ER : B(G) → B(HR), i.e. for all X ∈ B(G)

E(g.X) = UR(g).E(X)U∗
R(g)

Quantum reference frame ≡ quantum system + frame observable.
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Frame-relative descriptions

Given R = (HR,UR,ER), S = (HS ,US) restrict available effects
to those respecting choice of frame observable (call them framed):

B(HR ⊗HS)ER := conv{E(X)⊗ AS |X ∈ B(G),AS ∈ B(HS)}.

But we also want them to be invariant:

B(HR ⊗HS)
G
ER

:= B(HR ⊗HS)ER ∩ B(HR ⊗HS)
G.

Is this non-empty?
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Relativization
Relativization map is given by

¥R : B(HS) ∋ AS 7→
∫

G
dER(g)⊗ g.AS ∈ B(HR ⊗HS)

G
ER

.

h.¥R(AS) = h.
∫

G
dER(g)⊗g.AS =

∫
G

dER(hg)⊗hg.AS = ¥R(AS)

It is understood as incorporating reference explicitly into the
description of S . Relative description is given by

B(HS)
R := Im(¥R)cl ⊆ B(HR ⊗HS)

G
ER

,

S(HS)R := S(HR⊗HS)/∼B(HS)R
∼= Im(¥R

∗ ) =: S(HS)
R ⊆ S(HS).
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Restriction and localization

For ω ∈ S(HR) the ω-restriction maps are given by

Γω : B(HR ⊗HS) ∋ AR ⊗ AS 7→ ω(AR)AS ∈ B(HS)

and understood as conditioning description of composite system,
upon a choice of reference’s state. For frames that we call localizable
one can find a sequence of states (ωn) such that

lim
n→∞

(Γωn ◦¥R)(AS) = AS

for all AS ∈ B(HS). Thus the non-relational QM is recovered in a
limiting sense upon externalizing localizable reference frames.
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Internal frame change maps

Consider two internal localizable frames

H ∼= H1⊗H2 ⊗HS

E1 : B(G) → B(H1), E2 : B(G) → B(H2).

There is a well-defined, invertible and composable (in the context of
three frames) map Φloc

1→2 making the following diagrams commute

S(H1 ⊗H2 ⊗HS)G

S(H2 ⊗HS)
R1
E2

S(H1 ⊗HS)
R2
E1
.

πE2◦¥
R1
∗ πE1◦¥

R2
∗

Φloc
1→2
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Further research directions:

More general frames and systems

Relational interactions

Relational Process Theories

. . .
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Framed quantum observables

For any ER : F(Σ) → B(HR) and f : Σ → B(HS) such that

Σ ∋ x 7→ tr[ρfS(x)] ∈ C

are integrable for any state ρ ∈ S(HS), the operator∫
Σ

dER(x)⊗ f (x) ∈ B(HR ⊗HS)

is defined as continuous linear extension of

T (HR ⊗HS) ∋ ω ⊗ ρ 7→
∫
Σ

dµER
ω (x) tr[ρfS(x)] ∈ C.
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∫
Σ

dµER
ω (x) tr[ρfS(x)] ∈ C.
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General framed observables

For any ÊR : L∞(Σ, µ) → XR and f : Σ → XS such that

Σ ∋ x 7→ f (x)[tS ] ∈ R

are integrable for any tS ∈ (XS)∗, the operator∫
Σ

dÊR(x)⊗ f (x) ∈ XR ⊗ XS

is defined as continuous linear extension of

(XR)∗ ⊙ (XS)∗ ∋ tR ⊗ tS 7→
∫
Σ

dÊR[tR](x)f (x)[tS ]dµ ∈ R.

50 / 61



Preliminaries
Reference frames

Frame-relative descriptions
Restriction and localization

Frame transformations
Further perspectives

Relational interactions

For Σ ∼= G/H and σ : G/H → G (equivariant, Borel) we define

¥R
σ (A) :=

∫
G/H

dE(x)⊗ σ(x).A ∈ B(HR ⊗HS)
G. (1)

For G = P (Poincar’e) and H = O(1, 3) (Lorentz) consider

σ : P/O(1, 3) ∼= M4 ∋ x 7→ (x, σ̂(x)) ∈ M4 ⋊ O(1, 3) ∼= P.

Section σ̂ : M4 → O(1, 3) can be interpreted as encoding interaction
between frame and system, reflected by relativization map ¥R

σ .
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Relational Process Theories

The relativization construction can be seen as a functor

¥ : FrmG×RepG ∋ (R,S) 7→ B(HS)
R ⊂ B(HR⊗HS)

G ∈ EquivG,

where category FrmG is defined with R → R′ given by

B(HR) B(HR′)

B(G) B(G)

ψ

ER ER′

h._

and iG : EquivG ↪→ RepG is a subcategory of equivariant channels.
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Relativization map ¥R can be seen as a natural transformation

¥ : iG ⇒ B(HR)⊗ iG,

which follows from the commutativity of the following diagram

B(HR ⊗HS)

B(HS) B(HR′ ⊗HS)

B(HR ⊗HS′)

B(HS′) B(HR′ ⊗HS′).

¥R

¥R′

ϕ

¥R

¥R′

ψ⊗h.(_)

ψ⊗h.(_)

1R⊗ϕ

1R′⊗ϕ
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Thank you for your attention!
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