Relational Quantum Relativity

Jan Głowacki

International Center for Theory of Quantum Technologies, Gdańsk, Poland
Basic Research Community for Physics, Leipzig, Germany
Computer Science Department, Oxford, UK (soon)
17.11.2023

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics
with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and
background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
- no rigorous formalization of interacting theories
- dependent on fixed background space-time
- compromised operationality and relationality
- Goal:
- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Plan

(1) Preliminaries
(2) Reference frames
(3) Frame-relative descriptions
(4) Restriction and localization
(5) Frame transformations
(6) Further perspectives

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{s a}$,
- Observables are nositive onerator-valued measures (POVMs)

$$
\mathrm{E}: \mathcal{F}(\Sigma) \rightarrow B(\mathcal{H})
$$

giving rise to probability distributions via Born rule:

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{s a}$,
- Observables are positive operator-valued measures (POVMs)

$$
\mathrm{E}: \mathcal{F}(\Sigma) \rightarrow B(\mathcal{H})
$$

giving rise to probability distributions via Born rule:

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{s a}$,
- Observables are positive operator-valued measures (POVMs)

$$
\mathrm{E}: \mathcal{F}(\Sigma) \rightarrow B(\mathcal{H})
$$

giving rise to probability distributions via Born rule:

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{s a}$,
- Observables are positive operator-valued measures (POVMs)

$$
\mathrm{E}: \mathcal{F}(\Sigma) \rightarrow B(\mathcal{H})
$$

giving rise to probability distributions via Born rule:

$$
\mu_{\omega}^{\mathrm{E}}: \mathcal{F}(\Sigma) \ni X \mapsto \operatorname{tr}[\omega \mathrm{E}(X)]
$$

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega^{\prime}$ iff $\operatorname{tr}[\omega A]=\operatorname{tr}\left[\omega^{\prime} A\right]$ for all $A \in \mathcal{O}$,
- O-operational state space:

We have:

which extends the usual states/operators duality $(\mathcal{O}=B(\mathcal{H}))$:

$$
[B(\mathcal{H})]_{*} \cong \mathcal{T}(\mathcal{H}) .
$$

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega^{\prime}$ iff $\operatorname{tr}[\omega A]=\operatorname{tr}\left[\omega^{\prime} A\right]$ for all $A \in \mathcal{O}$,
- \mathcal{O}-operational state space:

$$
\mathcal{S}(\mathcal{H}) / \sim_{\mathcal{O}} \subset \mathcal{T}(\mathcal{H})^{s a} / \sim_{\mathcal{O}} .
$$

We have:

which extends the usual states/operators duality $(\mathcal{O}=B(\mathcal{H}))$:

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega^{\prime}$ iff $\operatorname{tr}[\omega A]=\operatorname{tr}\left[\omega^{\prime} A\right]$ for all $A \in \mathcal{O}$,
- \mathcal{O}-operational state space:

$$
\mathcal{S}(\mathcal{H}) / \sim_{\mathcal{O}} \subset \mathcal{T}(\mathcal{H})^{s a} / \sim_{\mathcal{O}} .
$$

We have:

$$
\left[\operatorname{span}(\mathcal{O})^{c l}\right]_{*} \cong \mathcal{T}(\mathcal{H}) / \sim_{\mathcal{O}}
$$

which extends the usual states/operators duality $(\mathcal{O}=B(\mathcal{H}))$:

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega^{\prime}$ iff $\operatorname{tr}[\omega A]=\operatorname{tr}\left[\omega^{\prime} A\right]$ for all $A \in \mathcal{O}$,
- \mathcal{O}-operational state space:

$$
\mathcal{S}(\mathcal{H}) / \sim_{\mathcal{O}} \subset \mathcal{T}(\mathcal{H})^{s a} / \sim_{\mathcal{O}} .
$$

We have:

$$
\left[\operatorname{span}(\mathcal{O})^{c l}\right]_{*} \cong \mathcal{T}(\mathcal{H}) / \sim_{\mathcal{O}}
$$

which extends the usual states/operators duality $(\mathcal{O}=B(\mathcal{H}))$:

$$
[B(\mathcal{H})]_{*} \cong \mathcal{T}(\mathcal{H})
$$

What is an operational quantum reference frame?

Intuition: coordinates are abstractions of physical systems
O Reference frames can be (re)oriented. Operationally speaking, they should be equipped with group action on system's state space, and (covariant) frame observable measuring orientation.
(2) Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the reference frame $=$ measuring instrument. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
© Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

Intuition: coordinates are abstractions of physical systems
(1) Reference frames can be (re)oriented. Operationally speaking, they should be equipped with group action on system's state space, and (covariant) frame observable measuring orientation.

Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the reference frame $=$ measuring instrument. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
© Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

Intuition: coordinates are abstractions of physical systems
(1) Reference frames can be (re)oriented. Operationally speaking, they should be equipped with group action on system's state space, and (covariant) frame observable measuring orientation.
(2) Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the reference frame $=$ measuring instrument. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
© Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

Intuition: coordinates are abstractions of physical systems
(1) Reference frames can be (re)oriented. Operationally speaking, they should be equipped with group action on system's state space, and (covariant) frame observable measuring orientation.
(2) Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the reference frame $=$ measuring instrument. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
(3) Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

Quantum reference frames

Quantum reference frame (for G) is a triple $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right)$:

- Hilbert space $\mathcal{H}_{\mathcal{R}}$
- group action $U_{\mathcal{R}}: G \rightarrow B\left(\mathcal{H} \mathcal{R}^{2}\right)^{\text {uni }}$
- covariant POVM $E_{\mathcal{R}}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathrm{E}(g \cdot X)=U_{\mathcal{R}}(g) \cdot \mathrm{E}(X) U_{\mathcal{R}}^{*}(g)
$$

Quantum reference frame \equiv quantum system + frame observable.

Quantum reference frames

Quantum reference frame (for G) is a triple $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right)$:

- Hilbert space $\mathcal{H}_{\mathcal{R}}$
- group action $U_{\mathcal{R}}: G \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)^{\text {uni }}$
- covariant POVM $\mathrm{E}_{\mathcal{R}}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$, i.e. for all $X \in \mathcal{B}(G)$

$$
E(g \cdot X)=U_{\mathcal{R}}(g) \cdot E(X) U_{\mathcal{R}}^{*}(g)
$$

[^0]
Quantum reference frames

Quantum reference frame (for G) is a triple $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right)$:

- Hilbert space $\mathcal{H}_{\mathcal{R}}$
- group action $U_{\mathcal{R}}: G \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)^{\text {uni }}$
- covariant POVM $E_{\mathcal{R}}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathrm{E}(g \cdot X)=U_{\mathcal{R}}(g) \cdot \mathrm{E}(X) U_{\mathcal{R}}^{*}(g)
$$

Quantum reference frame \equiv quantum system + frame observable.

Quantum reference frames

Quantum reference frame (for G) is a triple $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right)$:

- Hilbert space $\mathcal{H}_{\mathcal{R}}$
- group action $U_{\mathcal{R}}: G \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)^{\text {uni }}$
- covariant $\operatorname{POVM} \mathrm{E}_{\mathcal{R}}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathrm{E}(g \cdot X)=U_{\mathcal{R}}(g) \cdot \mathrm{E}(X) U_{\mathcal{R}}^{*}(g)
$$

Quantum reference frame \equiv quantum system + frame observable.

Quantum reference frames

Quantum reference frame (for G) is a triple $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right)$:

- Hilbert space $\mathcal{H}_{\mathcal{R}}$
- group action $U_{\mathcal{R}}: G \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)^{\text {uni }}$
- covariant $\operatorname{POVM} \mathrm{E}_{\mathcal{R}}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathrm{E}(g \cdot X)=U_{\mathcal{R}}(g) \cdot \mathrm{E}(X) U_{\mathcal{R}}^{*}(g)
$$

Quantum reference frame \equiv quantum system + frame observable.

Frame-relative descriptions

Given $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right), \mathcal{S}=\left(\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}}\right)$ restrict available effects to those respecting choice of frame observable (call them framed):
$B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}:=\operatorname{conv}\left\{\mathrm{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)\right\}$
But we also want them to be invariant:

Is this non-empty?

Frame-relative descriptions

Given $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right), \mathcal{S}=\left(\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}}\right)$ restrict available effects to those respecting choice of frame observable (call them framed):

$$
B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}:=\operatorname{conv}\left\{\mathrm{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)\right\}
$$

But we also want them to be invariant:

Is this non-empty?

Frame-relative descriptions

Given $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right), \mathcal{S}=\left(\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}}\right)$ restrict available effects to those respecting choice of frame observable (call them framed):

$$
B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}:=\operatorname{conv}\left\{\mathrm{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)\right\}
$$

But we also want them to be invariant:

$$
B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G}:=B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}} \cap B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G}
$$

Is this non-empty?

Frame-relative descriptions

Given $\mathcal{R}=\left(\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathrm{E}_{\mathcal{R}}\right), \mathcal{S}=\left(\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}}\right)$ restrict available effects to those respecting choice of frame observable (call them framed):

$$
B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}:=\operatorname{conv}\left\{\mathrm{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)\right\}
$$

But we also want them to be invariant:

$$
B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G}:=B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}} \cap B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G}
$$

Is this non-empty?

Relativization

Relativization map is given by

$$
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G}
$$

$h . ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h . \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g \cdot A_{\mathcal{S}}=¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)$
It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

$\mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)_{\mathcal{R}}:=\mathcal{S}\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) / \sim_{B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}} \cong \operatorname{Im}\left(¥_{*}^{\mathcal{R}}\right)=: \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}} \subseteq \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)$.

Relativization

Relativization map is given by

$$
\begin{gathered}
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g . A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathcal{E}_{\mathcal{R}}}^{G} . \\
h . \not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h \cdot \int_{G} d E_{\mathcal{R}}(g) \otimes g . A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g . A_{\mathcal{S}}=\not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)
\end{gathered}
$$

It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

Relativization

Relativization map is given by

$$
\begin{gathered}
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G} . \\
h . \not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h . \int_{G} d E_{\mathcal{R}}(g) \otimes g . A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g \cdot A_{\mathcal{S}}=¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)
\end{gathered}
$$

It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

Relativization

Relativization map is given by

$$
\begin{gathered}
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G} . \\
h . \not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h . \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g \cdot A_{\mathcal{S}}=¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)
\end{gathered}
$$

It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

$$
B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}:=\operatorname{Im}\left(\not ¥^{\mathcal{R}}\right)^{c l} \subseteq B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G},
$$

$\mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)_{\mathcal{R}}:=\mathcal{S}\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{S}\right) / \sim_{B\left(\mathcal{H}_{S}\right)^{\mathcal{R}}} \cong \operatorname{Im}\left(¥_{*}^{\mathcal{R}}\right)=: \mathcal{S}\left(\mathcal{H}_{S}\right)^{\mathcal{R}} \subseteq \mathcal{S}\left(\mathcal{H}_{S}\right)$.

Relativization

Relativization map is given by

$$
\begin{gathered}
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G} . \\
h . \not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h . \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g \cdot A_{\mathcal{S}}=¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)
\end{gathered}
$$

It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

$$
\begin{array}{r}
B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}:=\operatorname{Im}\left(\not ¥^{\mathcal{R}}\right)^{c l} \subseteq B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{E_{\mathcal{R}}}^{G} \\
\mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)_{\mathcal{R}}:=\mathcal{S}\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) / \sim_{B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}} \cong \operatorname{Im}\left(\Psi_{*}^{\mathcal{R}}\right)=: S(\mathcal{H}
\end{array}
$$

Relativization

Relativization map is given by

$$
\begin{gathered}
\not ¥^{\mathcal{R}}: B\left(\mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{S}} \mapsto \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{\mathrm{E}_{\mathcal{R}}}^{G} . \\
h . \not ¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)=h . \int_{G} d E_{\mathcal{R}}(g) \otimes g \cdot A_{\mathcal{S}}=\int_{G} d E_{\mathcal{R}}(h g) \otimes h g \cdot A_{\mathcal{S}}=¥^{\mathcal{R}}\left(A_{\mathcal{S}}\right)
\end{gathered}
$$

It is understood as incorporating reference explicitly into the description of \mathcal{S}. Relative description is given by

$$
\begin{gathered}
B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}:=\operatorname{Im}\left(\not ¥^{\mathcal{R}}\right)^{c l} \subseteq B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)_{E_{\mathcal{R}}}^{G} \\
\mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)_{\mathcal{R}}:=\mathcal{S}\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) / \sim_{B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}}} \cong \operatorname{Im}\left(\not ¥_{*}^{\mathcal{R}}\right)=: \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}} \subseteq \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right) .
\end{gathered}
$$

Restriction and localization

For $\omega \in \mathcal{S}\left(\mathcal{H}_{\mathcal{R}}\right)$ the ω-restriction maps are given by

$$
\Gamma_{\omega}: B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega\left(A_{\mathcal{R}}\right) A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)
$$

and understood as conditioning description of composite system,
upon a choice of reference's state. For frames that we call localizable
one can find a sequence of states $\left(\omega_{n}\right)$ such that

for all $A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)$. Thus the non-relational QM is recovered in a
limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}\left(\mathcal{H}_{\mathcal{R}}\right)$ the ω-restriction maps are given by

$$
\Gamma_{\omega}: B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega\left(A_{\mathcal{R}}\right) A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)
$$

and understood as conditioning description of composite system, upon a choice of reference's state.
one can find a sequence of states $\left(\omega_{n}\right)$ such that
for all $A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)$. Thus the non-relational QM is recovered in a
limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}\left(\mathcal{H}_{\mathcal{R}}\right)$ the ω-restriction maps are given by

$$
\Gamma_{\omega}: B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega\left(A_{\mathcal{R}}\right) A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)
$$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call localizable one can find a sequence of states $\left(\omega_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left(\Gamma_{\omega_{n}} \circ ¥{ }^{\mathcal{R}}\right)\left(A_{\mathcal{S}}\right)=A_{\mathcal{S}}
$$

for all $A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)$. Thus the non-relational QM is recovered in a
limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}\left(\mathcal{H}_{\mathcal{R}}\right)$ the ω-restriction maps are given by

$$
\Gamma_{\omega}: B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega\left(A_{\mathcal{R}}\right) A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)
$$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call localizable one can find a sequence of states $\left(\omega_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left(\Gamma_{\omega_{n}} \circ \not ¥^{\mathcal{R}}\right)\left(A_{\mathcal{S}}\right)=A_{\mathcal{S}}
$$

for all $A_{\mathcal{S}} \in B\left(\mathcal{H}_{\mathcal{S}}\right)$. Thus the non-relational QM is recovered in a limiting sense upon externalizing localizable reference frames.

Internal frame change maps

Consider two internal localizable frames

There is a well-defined, invertible and composable (in the context of three frames) map $\Phi_{1 \rightarrow 2}^{\text {loc }}$ making the following diagrams commute $\mathcal{S}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{\mathcal{S}}\right)_{G}$

Internal frame change maps

Consider two internal localizable frames

$$
\begin{gathered}
\mathcal{H} \cong \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{\mathcal{S}} \\
\mathrm{E}_{1}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{1}\right), \quad \mathrm{E}_{2}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{2}\right)
\end{gathered}
$$

There is a well-defined, invertible and composable (in the context of three frames) map $\Phi_{1 \rightarrow 2}^{\text {loc }}$ making the following diagrams commute
$\mathcal{S}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{\mathcal{S}}\right)_{G}$

Internal frame change maps

Consider two internal localizable frames

$$
\begin{gathered}
\mathcal{H} \cong \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{\mathcal{S}} \\
\mathrm{E}_{1}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{1}\right), \quad \mathrm{E}_{2}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{2}\right)
\end{gathered}
$$

There is a well-defined, invertible and composable (in the context of three frames) map $\Phi_{1 \rightarrow 2}^{l o c}$ making the following diagrams commute

Internal frame change maps

Consider two internal localizable frames

$$
\begin{gathered}
\mathcal{H} \cong \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{\mathcal{S}} \\
\mathrm{E}_{1}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{1}\right), \quad \mathrm{E}_{2}: \mathcal{B}(G) \rightarrow B\left(\mathcal{H}_{2}\right)
\end{gathered}
$$

There is a well-defined, invertible and composable (in the context of three frames) map $\Phi_{1 \rightarrow 2}^{l o c}$ making the following diagrams commute

Further research directions:

- More general frames and systems
- Relational interactions
- Relational Process Theories

Further research directions:

- More general frames and systems
- Relational interactions
- Relational Process Theories

Framed quantum observables

For any $\mathrm{E}_{\mathcal{R}}: \mathcal{F}(\Sigma) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$ and $f: \Sigma \rightarrow B\left(\mathcal{H}_{\mathcal{S}}\right)$ such that

are integrable for any state $\rho \in \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)$, the operator

is defined as continuous linear extension of

Framed quantum observables

For any $\mathrm{E}_{\mathcal{R}}: \mathcal{F}(\Sigma) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$ and $f: \Sigma \rightarrow B\left(\mathcal{H}_{\mathcal{S}}\right)$ such that

$$
\Sigma \ni x \mapsto \operatorname{tr}\left[\rho f_{\mathcal{S}}(x)\right] \in \mathbb{C}
$$

are integrable for any state $\rho \in \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)$, the operator

is defined as continuous linear extension of

Framed quantum observables

For any $\mathrm{E}_{\mathcal{R}}: \mathcal{F}(\Sigma) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$ and $f: \Sigma \rightarrow B\left(\mathcal{H}_{\mathcal{S}}\right)$ such that

$$
\Sigma \ni x \mapsto \operatorname{tr}\left[\rho f_{\mathcal{S}}(x)\right] \in \mathbb{C}
$$

are integrable for any state $\rho \in \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)$, the operator

$$
\int_{\Sigma} d \mathrm{E}_{\mathcal{R}}(x) \otimes f(x) \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)
$$

is defined as continuous linear extension of

Framed quantum observables

For any $\mathrm{E}_{\mathcal{R}}: \mathcal{F}(\Sigma) \rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right)$ and $f: \Sigma \rightarrow B\left(\mathcal{H}_{\mathcal{S}}\right)$ such that

$$
\Sigma \ni x \mapsto \operatorname{tr}\left[\rho f_{\mathcal{S}}(x)\right] \in \mathbb{C}
$$

are integrable for any state $\rho \in \mathcal{S}\left(\mathcal{H}_{\mathcal{S}}\right)$, the operator

$$
\int_{\Sigma} d \mathrm{E}_{\mathcal{R}}(x) \otimes f(x) \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)
$$

is defined as continuous linear extension of

$$
\mathcal{T}\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right) \ni \omega \otimes \rho \mapsto \int_{\Sigma} d \mu_{\omega}^{\mathrm{E}_{\mathcal{R}}}(x) \operatorname{tr}\left[\rho f_{\mathcal{S}}(x)\right] \in \mathbb{C}
$$

General framed observables

For any $\hat{\mathrm{E}}_{\mathcal{R}}: L^{\infty}(\Sigma, \mu) \rightarrow X_{\mathcal{R}}$ and $f: \Sigma \rightarrow X_{\mathcal{S}}$ such that

$$
\Sigma \ni x \mapsto f(x)\left[t_{\mathcal{S}}\right] \in \mathbb{R}
$$

are integrable for any $t_{\mathcal{S}} \in\left(X_{\mathcal{S}}\right)_{*}$, the operator

$$
\int_{\Sigma} d \hat{\mathrm{E}}_{\mathcal{R}}(x) \otimes f(x) \in X_{\mathcal{R}} \otimes X_{\mathcal{S}}
$$

is defined as continuous linear extension of

$$
\left(X_{\mathcal{R}}\right)_{*} \odot\left(X_{\mathcal{S}}\right)_{*} \ni t_{\mathcal{R}} \otimes t_{\mathcal{S}} \mapsto \int_{\Sigma} d \hat{\mathrm{E}}_{\mathcal{R}}\left[t_{\mathcal{R}}\right](x) f(x)\left[t_{\mathcal{S}}\right] d \mu \in \mathbb{R}
$$

Relational interactions

For $\Sigma \cong G / H$ and $\sigma: G / H \rightarrow G$ (equivariant, Borel) we define

For $G=P$ (Poincar'e) and $H=O(1,3)$ (Lorentz) consider $\sigma: P / O(1,3) \cong M^{4} \ni x \mapsto(x, \hat{\sigma}(x)) \in M^{4} \times O(1,3) \cong P$.

Section $\hat{\sigma}: \mathbb{M}^{4} \rightarrow O(1,3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $¥{ }_{\sigma}^{\mathcal{R}}$.

Relational interactions

For $\Sigma \cong G / H$ and $\sigma: G / H \rightarrow G$ (equivariant, Borel) we define

$$
¥_{\sigma}^{\mathcal{R}}(A):=\int_{G / H} d \mathrm{E}(x) \otimes \sigma(x) \cdot A \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G}
$$

For $G=P$ (Poincar'e) and $H=O(1,3)$ (Lorentz) consider $\sigma: P / O(1,3) \cong \mathbb{M}^{4} \ni x \mapsto(x, \hat{\sigma}(x)) \in \mathbb{M}^{4} \rtimes O(1,3) \cong P$.

Section $\hat{\sigma}: M^{4} \rightarrow O(1,3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $¥{ }_{\sigma}^{\mathcal{R}}$

Relational interactions

For $\Sigma \cong G / H$ and $\sigma: G / H \rightarrow G$ (equivariant, Borel) we define

$$
\begin{equation*}
¥_{\sigma}^{\mathcal{R}}(A):=\int_{G / H} d \mathrm{E}(x) \otimes \sigma(x) \cdot A \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} \tag{1}
\end{equation*}
$$

For $G=P$ (Poincar'e) and $H=O(1,3)$ (Lorentz) consider

Section $\hat{\sigma}: M^{4} \rightarrow O(1,3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $¥{ }_{\sigma}^{\mathcal{R}}$

Relational interactions

For $\Sigma \cong G / H$ and $\sigma: G / H \rightarrow G$ (equivariant, Borel) we define

$$
\begin{equation*}
¥_{\sigma}^{\mathcal{R}}(A):=\int_{G / H} d \mathrm{E}(x) \otimes \sigma(x) \cdot A \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} \tag{1}
\end{equation*}
$$

For $G=P$ (Poincar'e) and $H=O(1,3)$ (Lorentz) consider

$$
\sigma: P / O(1,3) \cong \mathbb{M}^{4} \ni x \mapsto(x, \hat{\sigma}(x)) \in \mathbb{M}^{4} \rtimes O(1,3) \cong P
$$

Section $\hat{\sigma}: \mathbb{M}^{4} \rightarrow O(1,3)$ can be interpreted as encoding interaction
between frame and system, reflected by relativization map $¥{ }_{\sigma}^{\mathcal{R}}$.

Relational interactions

For $\Sigma \cong G / H$ and $\sigma: G / H \rightarrow G$ (equivariant, Borel) we define

$$
\begin{equation*}
¥_{\sigma}^{\mathcal{R}}(A):=\int_{G / H} d \mathrm{E}(x) \otimes \sigma(x) \cdot A \in B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} . \tag{1}
\end{equation*}
$$

For $G=P$ (Poincar'e) and $H=O(1,3)$ (Lorentz) consider

$$
\sigma: P / O(1,3) \cong \mathbb{M}^{4} \ni x \mapsto(x, \hat{\sigma}(x)) \in \mathbb{M}^{4} \rtimes O(1,3) \cong P
$$

Section $\hat{\sigma}: \mathbb{M}^{4} \rightarrow O(1,3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $¥_{\sigma}^{\mathcal{R}}$.

Relational Process Theories

The relativization construction can be seen as a functor
$¥: \mathbf{F r m}_{G} \times \operatorname{Rep}_{G} \ni(\mathcal{R}, \mathcal{S}) \mapsto B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}} \subset B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} \in \mathbf{E q u i v}_{G}$,
where category Frm_{G} is defined with $\mathcal{R} \rightarrow \mathcal{R}^{\prime}$ given by

and $i_{G}:$ Equiv $_{G} \hookrightarrow \operatorname{Rep}_{G}$ is a subcategory of equivariant channels.

Relational Process Theories

The relativization construction can be seen as a functor
$¥: \mathbf{F r m}_{G} \times \operatorname{Rep}_{G} \ni(\mathcal{R}, \mathcal{S}) \mapsto B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}} \subset B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} \in \mathbf{E q u i v}_{G}$,
where category $\mathbf{F r m}_{G}$ is defined with $\mathcal{R} \rightarrow \mathcal{R}^{\prime}$ given by

and $i_{G}:$ Equiv $_{G} \hookrightarrow \operatorname{Rep}_{G}$ is a subcategory of equivariant channels.

Relational Process Theories

The relativization construction can be seen as a functor
$¥: \mathbf{F r m}_{G} \times \operatorname{Rep}_{G} \ni(\mathcal{R}, \mathcal{S}) \mapsto B\left(\mathcal{H}_{\mathcal{S}}\right)^{\mathcal{R}} \subset B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)^{G} \in \mathbf{E q u i v}_{G}$,
where category $\mathbf{F r m}_{G}$ is defined with $\mathcal{R} \rightarrow \mathcal{R}^{\prime}$ given by

and $i_{G}: \operatorname{Equiv}_{G} \hookrightarrow \operatorname{Rep}_{G}$ is a subcategory of equivariant channels.

Relativization map $¥^{\mathcal{R}}$ can be seen as a natural transformation

$$
¥: i_{G} \Rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right) \otimes i_{G},
$$

which follows from the commutativity of the following diagram

$B\left(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}\right)$

Relativization map $¥^{\mathcal{R}}$ can be seen as a natural transformation

$$
¥: i_{G} \Rightarrow B\left(\mathcal{H}_{\mathcal{R}}\right) \otimes i_{G},
$$

which follows from the commutativity of the following diagram

Thank you for your attention!

[^0]: Quantum reference frame \equiv quantum system + frame observable.

