

International Centre for Theory of Quantum **Technologies**

Relational Quantum Relativity

Jan Głowacki

International Center for Theory of Quantum Technologies, Gdansk, Poland ´ Basic Research Community for Physics, Leipzig, Germany Computer Science Department, Oxford, UK (soon)

17.11.2023

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No. 101070558

The project named "Foundations of quantum computational advantage" - FoQaCiA, No. 101070558 has received funding from the European Union within the Horizon Europe Framework Programme (HORIZON), the type of action HORIZON Research and Innovation Actions (HORIZON-RIA).

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality
- Goal:
	- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality
- Goal:
	- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality
- Goal:
	- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality
- Goal:
	- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Motivation

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality

Goal:

• operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

- Motivation: despite tremendous success, quantum field theory is not fully satisfactory as a fundamental framework for physics:
	- no rigorous formalization of interacting theories
	- dependent on fixed background space-time
	- compromised operationality and relationality
- Goal:
	- operational, completely rigorous, non-perturbative and background-less approach to relativistic (post-)quantum physics with a fully relational account of interactions, including gravity.

Plan

- 2 [Reference frames](#page-17-0)
- 3 [Frame-relative descriptions](#page-26-0)
- 4 [Restriction and localization](#page-36-0)
- 5 [Frame transformations](#page-40-0)
- 6 [Further perspectives](#page-44-0)

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{sa}$,
- Observables are positive operator-valued measures (POVMs)

$$
\textsf{E}:\mathcal{F}(\Sigma)\rightarrow\textit{B}(\mathcal{H}),
$$

$$
\mu_{\omega}^{\mathsf{E}} : \mathcal{F}(\Sigma) \ni X \mapsto \mathrm{tr}[\omega \mathsf{E}(X)].
$$

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

• States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{sa}$,

Observables are positive operator-valued measures (POVMs) $\begin{array}{c} \bullet \\ \bullet \end{array}$

$$
\textsf{E}:\mathcal{F}(\Sigma)\rightarrow\textit{B}(\mathcal{H}),
$$

$$
\mu_{\omega}^{\mathsf{E}} : \mathcal{F}(\Sigma) \ni X \mapsto \mathrm{tr}[\omega \mathsf{E}(X)].
$$

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{sa}$,
- Observables are positive operator-valued measures (POVMs)

$$
\textsf{E}:\mathcal{F}(\Sigma)\rightarrow\textit{B}(\mathcal{H}),
$$

$$
\mu_{\omega}^{\mathsf{E}} : \mathcal{F}(\Sigma) \ni X \mapsto \mathrm{tr}[\omega \mathsf{E}(X)].
$$

Quantum Mechanics

We endorse the following perspective on quantum mechanics (aligned with GPT frameworks):

- States are density operators $\mathcal{S}(\mathcal{H}) \subset \mathcal{T}(\mathcal{H})^{sa}$,
- Observables are positive operator-valued measures (POVMs)

$$
\textsf{E}:\mathcal{F}(\Sigma)\rightarrow\textit{B}(\mathcal{H}),
$$

$$
\mu_{\omega}^{\mathsf{E}} : \mathcal{F}(\Sigma) \ni X \mapsto \mathrm{tr}[\omega \mathsf{E}(X)].
$$

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

•
$$
\omega \sim_{\mathcal{O}} \omega'
$$
 iff $\text{tr}[\omega A] = \text{tr}[\omega' A]$ for all $A \in \mathcal{O}$,

O-operational state space:

$$
\mathcal{S}(\mathcal{H})/\!\!\sim_{\mathcal{O}}\subset \mathcal{T}(\mathcal{H})^{sa}/\!\!\sim_{\mathcal{O}}.
$$

We have:

$$
[\text{span}(\mathcal{O})^{cl}]_* \cong \mathcal{T}(\mathcal{H})/\sim_{\mathcal{O}},
$$

which extends the usual states/operators duality ($\mathcal{O} = B(\mathcal{H})$):

 $[B(\mathcal{H})]_* \cong \mathcal{T}(\mathcal{H})$.

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega'$ iff $\text{tr}[\omega A] = \text{tr}[\omega' A]$ for all $A \in \mathcal{O}$,
- *O*-operational state space:

$$
\mathcal{S}(\mathcal{H})/{\sim_{\mathcal{O}}}\subset \mathcal{T}(\mathcal{H})^{sa}/{\sim_{\mathcal{O}}}.
$$

We have:

$$
[\text{span}(\mathcal{O})^{cl}]_* \cong \mathcal{T}(\mathcal{H})/\sim_{\mathcal{O}},
$$

which extends the usual states/operators duality ($\mathcal{O} = B(\mathcal{H})$):

 $[B(\mathcal{H})]_* \cong \mathcal{T}(\mathcal{H})$.

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega'$ iff $\text{tr}[\omega A] = \text{tr}[\omega' A]$ for all $A \in \mathcal{O}$,
- *O*-operational state space:

$$
\mathcal{S}(\mathcal{H})/\!\!\sim_{\mathcal{O}}\subset \mathcal{T}(\mathcal{H})^{sa}/\!\!\sim_{\mathcal{O}}.
$$

We have:

$\left[\text{span}(\mathcal{O})^{cl}\right]_* \cong \mathcal{T}(\mathcal{H})/\sim_{\mathcal{O}},$

which extends the usual states/operators duality ($\mathcal{O} = B(\mathcal{H})$):

 $[B(\mathcal{H})]_* \cong \mathcal{T}(\mathcal{H})$.

Operational equivalence

Set of available operators may be constrained $\mathcal{O} \subset B(\mathcal{H})$. Then

- $\omega \sim_{\mathcal{O}} \omega'$ iff $\text{tr}[\omega A] = \text{tr}[\omega' A]$ for all $A \in \mathcal{O}$,
- *O*-operational state space:

$$
\mathcal{S}(\mathcal{H})/\!\!\sim_{\mathcal{O}}\subset \mathcal{T}(\mathcal{H})^{sa}/\!\!\sim_{\mathcal{O}}.
$$

We have:

$$
[\text{span}(\mathcal{O})^{cl}]_* \cong \mathcal{T}(\mathcal{H})/\sim_{\mathcal{O}},
$$

which extends the usual states/operators duality ($\mathcal{O} = B(\mathcal{H})$):

$$
[B(\mathcal{H})]_* \cong \mathcal{T}(\mathcal{H}).
$$

What is an operational quantum reference frame?

- ¹ Reference frames can be *(re)oriented*. Operationally speaking, they should be equipped with *group action* on system's state space, and (covariant) *frame observable* measuring orientation.
- **2** Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the *reference frame = measuring instrument*. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
- ³ Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

- **1 Reference frames can be** *(re)oriented*. Operationally speaking, they should be equipped with *group action* on system's state space, and (covariant) *frame observable* measuring orientation.
- **2** Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the *reference frame = measuring instrument*. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
- ³ Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

- **1 Reference frames can be** *(re)oriented*. Operationally speaking, they should be equipped with *group action* on system's state space, and (covariant) *frame observable* measuring orientation.
- **2** Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the *reference frame = measuring instrument*. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
- ³ Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

What is an operational quantum reference frame?

- **1 Reference frames can be** *(re)oriented*. Operationally speaking, they should be equipped with *group action* on system's state space, and (covariant) *frame observable* measuring orientation.
- **2** Relativity of measurement/observation. The operationally meaningful observables depend on the choice of the *reference frame = measuring instrument*. They should be defined on composite systems, (gauge-)invariant and compatible with choice of frame observable.
- ³ Universality of quantum mechanics. Physical systems are modelled by Hilbert space-based quantum mechanics.

Quantum reference frames

Quantum reference frame (for *G*) is a triple $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}})$:

- Hilbert space *H^R* \bullet
- **e** group action U_R : $G \rightarrow B(\mathcal{H}_R)$ ^{uni}
- *covariant* POVM E_R : $\mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_R)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathsf{E}(g.X) = U_{\mathcal{R}}(g).\mathsf{E}(X)U_{\mathcal{R}}^*(g)
$$

Quantum reference frames

Quantum reference frame (for *G*) is a triple $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}})$:

Hilbert space *H^R*

- **e** group action U_R : $G \rightarrow B(\mathcal{H}_R)$ ^{uni}
- *covariant* POVM E_R : $\mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_R)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathsf{E}(g.X) = U_{\mathcal{R}}(g).\mathsf{E}(X)U_{\mathcal{R}}^*(g)
$$

Quantum reference frames

Quantum reference frame (for *G*) is a triple $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}})$:

- Hilbert space *H^R*
- **e** group action $U_{\mathcal{R}} : G \to B(\mathcal{H}_{\mathcal{R}})^{uni}$
- *covariant* POVM E_R : $\mathcal{B}(G) \to B(\mathcal{H}_R)$, i.e. for all $X \in \mathcal{B}(G)$

 $E(g.X) = U_{\mathcal{R}}(g).E(X)U_{\mathcal{R}}^*(g)$

Quantum reference frames

Quantum reference frame (for *G*) is a triple $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}})$:

- Hilbert space *H^R*
- **e** group action $U_{\mathcal{R}}$: $G \rightarrow B(\mathcal{H}_{\mathcal{R}})^{uni}$
- *covariant* POVM E_R : $\mathcal{B}(G) \to B(\mathcal{H}_R)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathsf{E}(g.X) = U_{\mathcal{R}}(g).\mathsf{E}(X)U_{\mathcal{R}}^*(g)
$$

Quantum reference frames

Quantum reference frame (for *G*) is a triple $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}})$:

- Hilbert space *H^R*
- **e** group action $U_{\mathcal{R}} : G \to B(\mathcal{H}_{\mathcal{R}})^{uni}$
- *covariant* POVM E_R : $\mathcal{B}(G) \to B(\mathcal{H}_R)$, i.e. for all $X \in \mathcal{B}(G)$

$$
\mathsf{E}(g.X) = U_{\mathcal{R}}(g).\mathsf{E}(X)U_{\mathcal{R}}^*(g)
$$

Frame-relative descriptions

Given $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}}), \mathcal{S} = (\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}})$ *restrict* available effects to those respecting choice of *frame observable* (call them *framed*):

 $B(\mathcal{H}_{R} \otimes \mathcal{H}_{S})_{\mathsf{F}_{R}} := \text{conv}\{\mathsf{E}(X) \otimes A_{S} \mid X \in \mathcal{B}(G), A_{S} \in B(\mathcal{H}_{S})\}.$

But we also want them to be *invariant*:

 $B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{R}}}^{\mathsf{G}} := B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{R}}} \cap B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{\mathsf{G}}.$ Is this *non-empty*?

Frame-relative descriptions

Given $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}}), \mathcal{S} = (\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}})$ *restrict* available effects to those respecting choice of *frame observable* (call them *framed*):

 $B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{P}}} := \text{conv}\{\mathsf{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{S}})\}.$

But we also want them to be *invariant*:

 $B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{R}}}^{\mathsf{G}} := B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{R}}} \cap B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{\mathsf{G}}.$ Is this *non-empty*?

Frame-relative descriptions

Given $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}}), \mathcal{S} = (\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}})$ *restrict* available effects to those respecting choice of *frame observable* (call them *framed*):

$$
B(\mathcal{H}_{\mathcal{R}}\otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{R}}}:=\mathrm{conv}\{\mathsf{E}(X)\otimes A_{\mathcal{S}}\,|\,X\in \mathcal{B}(G), A_{\mathcal{S}}\in B(\mathcal{H}_{\mathcal{S}})\}.
$$

But we also want them to be *invariant*:

$$
B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{E_{\mathcal{R}}}^G := B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{E_{\mathcal{R}}} \cap B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^G.
$$

Is this non-empty?

Frame-relative descriptions

Given $\mathcal{R} = (\mathcal{H}_{\mathcal{R}}, U_{\mathcal{R}}, \mathsf{E}_{\mathcal{R}}), \mathcal{S} = (\mathcal{H}_{\mathcal{S}}, U_{\mathcal{S}})$ *restrict* available effects to those respecting choice of *frame observable* (call them *framed*):

 $B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{\mathsf{E}_{\mathcal{P}}} := \text{conv}\{\mathsf{E}(X) \otimes A_{\mathcal{S}} \mid X \in \mathcal{B}(G), A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{S}})\}.$

But we also want them to be *invariant*:

$$
B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{E_{\mathcal{R}}}^G := B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})_{E_{\mathcal{R}}} \cap B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^G.
$$

Is this non-empty?

Relativization

Relativization map is given by

$$
\maltese^{\mathcal{R}}: B(\mathcal{H}_{\mathcal{S}}) \ni A_{\mathcal{S}} \mapsto \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g. A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg. A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{\mathsf{E}_{\mathcal{R}}},
$$

Relativization

Relativization map is given by

$$
\maltese^{\mathcal{R}}: B(\mathcal{H}_{\mathcal{S}}) \ni A_{\mathcal{S}} \mapsto \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg.A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{\mathsf{E}_{\mathcal{R}}},
$$

Relativization

Relativization map is given by

$$
\maltese^{\mathcal{R}}: B(\mathcal{H}_{\mathcal{S}}) \ni A_{\mathcal{S}} \mapsto \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg.A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{\mathsf{E}_{\mathcal{R}}},
$$

Relativization

Relativization map is given by

$$
\Psi^{\mathcal{R}}:B(\mathcal{H}_{\mathcal{S}})\ni A_{\mathcal{S}}\mapsto \int_{G}dE_{\mathcal{R}}(g)\otimes g.A_{\mathcal{S}}\in B(\mathcal{H}_{\mathcal{R}}\otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg.A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}},
$$

Relativization

Relativization map is given by

$$
\Psi^{\mathcal{R}}:B(\mathcal{H}_{\mathcal{S}})\ni A_{\mathcal{S}}\mapsto \int_{G}dE_{\mathcal{R}}(g)\otimes g.A_{\mathcal{S}}\in B(\mathcal{H}_{\mathcal{R}}\otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg.A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}},
$$

 $\mathcal{S}(\mathcal{H}_{\mathcal{S}})_{\mathcal{R}} := \mathcal{S}(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})/\sim_{\mathcal{B}(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}}} \cong \mathrm{Im}(\mathbb{F}_{*}^{\times}) =: \mathcal{S}(\mathcal{H}_{\mathcal{S}})^{\times} \subseteq \mathcal{S}(\mathcal{H}_{\mathcal{S}}).$

Relativization

Relativization map is given by

$$
\Psi^{\mathcal{R}}:B(\mathcal{H}_{\mathcal{S}})\ni A_{\mathcal{S}}\mapsto \int_{G}dE_{\mathcal{R}}(g)\otimes g.A_{\mathcal{S}}\in B(\mathcal{H}_{\mathcal{R}}\otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}}.
$$

$$
h.\mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}}) = h. \int_{G} dE_{\mathcal{R}}(g) \otimes g.A_{\mathcal{S}} = \int_{G} dE_{\mathcal{R}}(hg) \otimes hg.A_{\mathcal{S}} = \mathbb{F}^{\mathcal{R}}(A_{\mathcal{S}})
$$

It is understood as incorporating reference explicitly into the description of *S*. *Relative* description is given by

$$
B(\mathcal{H}_{\mathcal{S}})^{\mathcal{R}} := \operatorname{Im}(\Psi^{\mathcal{R}})^{cl} \subseteq B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}_{E_{\mathcal{R}}},
$$

Restriction and localization

For $\omega \in \mathcal{S}(\mathcal{H}_{\mathcal{R}})$ the ω -restriction maps are given by

$\Gamma_{\omega}: B(\mathcal{H}_{R} \otimes \mathcal{H}_{S}) \ni A_{R} \otimes A_{S} \mapsto \omega(A_{R})A_{S} \in B(\mathcal{H}_{S})$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call *localizable* one can find a sequence of states (ω_n) such that

$$
\lim_{n\to\infty}(\Gamma_{\omega_n}\circ \Psi^{\mathcal{R}})(A_{\mathcal{S}})=A_{\mathcal{S}}
$$

for all $A_s \in B(H_s)$. Thus the non-relational QM is recovered in a limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}(\mathcal{H}_{\mathcal{R}})$ the ω -restriction maps are given by

 $\Gamma_{\omega}: B(\mathcal{H}_{R} \otimes \mathcal{H}_{S}) \ni A_{R} \otimes A_{S} \mapsto \omega(A_{R})A_{S} \in B(\mathcal{H}_{S})$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call *localizable* one can find a sequence of states (ω_n) such that

$$
\lim_{n\to\infty}(\Gamma_{\omega_n}\circ \mathfrak{F}^{\mathcal{R}})(A_{\mathcal{S}})=A_{\mathcal{S}}
$$

for all $A_S \in B(H_S)$. Thus the non-relational QM is recovered in a limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}(\mathcal{H}_{\mathcal{R}})$ the ω -restriction maps are given by

$$
\Gamma_{\omega}: B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega(A_{\mathcal{R}})A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{S}})
$$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call *localizable* one can find a sequence of states (ω_n) such that

$$
\lim_{n\to\infty}(\Gamma_{\omega_n}\circ \Psi^{\mathcal{R}})(A_{\mathcal{S}})=A_{\mathcal{S}}
$$

for all $A_S \in B(H_S)$. Thus the non-relational QM is recovered in a limiting sense upon externalizing localizable reference frames.

Restriction and localization

For $\omega \in \mathcal{S}(\mathcal{H}_{\mathcal{R}})$ the ω -restriction maps are given by

$$
\Gamma_{\omega}: B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}}) \ni A_{\mathcal{R}} \otimes A_{\mathcal{S}} \mapsto \omega(A_{\mathcal{R}})A_{\mathcal{S}} \in B(\mathcal{H}_{\mathcal{S}})
$$

and understood as conditioning description of composite system, upon a choice of reference's state. For frames that we call *localizable* one can find a sequence of states (ω_n) such that

$$
\lim_{n\to\infty}(\Gamma_{\omega_n}\circ \Psi^{\mathcal{R}})(A_{\mathcal{S}})=A_{\mathcal{S}}
$$

for all $A_S \in B(H_S)$. Thus the non-relational QM is recovered in a limiting sense upon externalizing localizable reference frames.

Internal frame change maps

Consider two *internal* localizable frames

 $\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_S$ $E_1 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_1), \quad E_2 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_2).$

Internal frame change maps

Consider two *internal* localizable frames

$$
\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_S
$$

\n
$$
E_1 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_1), \quad E_2 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_2).
$$

Internal frame change maps

Consider two *internal* localizable frames

$$
\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_S
$$

\n
$$
\mathsf{E}_1 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_1), \quad \mathsf{E}_2 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_2).
$$

Internal frame change maps

Consider two *internal* localizable frames

$$
\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_S
$$

\n
$$
E_1 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_1), \quad E_2 : \mathcal{B}(G) \to \mathcal{B}(\mathcal{H}_2).
$$

Further research directions:

- More general frames and systems
- Relational interactions
- Relational Process Theories
- \bullet

Further research directions:

- More general frames and systems
- Relational interactions
- Relational Process Theories
- \bullet ...

Framed quantum observables

For any $\mathsf{E}_{\mathcal{R}} : \mathcal{F}(\Sigma) \to B(\mathcal{H}_{\mathcal{R}})$ and $f : \Sigma \to B(\mathcal{H}_{\mathcal{S}})$ such that

 $\Sigma \ni x \mapsto \text{tr}[\rho f_S(x)] \in \mathbb{C}$

are *integrable* for any state $\rho \in \mathcal{S}(\mathcal{H}_\mathcal{S})$, the operator

$$
\int_{\Sigma} dE_{\mathcal{R}}(x) \otimes f(x) \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})
$$

$$
\mathcal{T}(\mathcal{H}_{\mathcal{R}}\otimes\mathcal{H}_{\mathcal{S}})\ni\omega\otimes\rho\mapsto\int_{\Sigma}d\mu_{\omega}^{\mathsf{E}_{\mathcal{R}}}(x)\operatorname{tr}[\rho f_{\mathcal{S}}(x)]\in\mathbb{C}.
$$

Framed quantum observables

For any $\mathsf{E}_{\mathcal{R}} : \mathcal{F}(\Sigma) \to B(\mathcal{H}_{\mathcal{R}})$ and $f : \Sigma \to B(\mathcal{H}_{\mathcal{S}})$ such that $\Sigma \ni x \mapsto \text{tr}[\rho f_S(x)] \in \mathbb{C}$

are *integrable* for any state $\rho \in \mathcal{S}(\mathcal{H}_\mathcal{S})$, the operator

 $\Delta E_R(x) \otimes f(x) \in B(\mathcal{H}_R \otimes \mathcal{H}_S)$

$$
\mathcal{T}(\mathcal{H}_{\mathcal{R}}\otimes\mathcal{H}_{\mathcal{S}})\ni\omega\otimes\rho\mapsto\int_{\Sigma}d\mu_{\omega}^{\mathsf{E}_{\mathcal{R}}}(x)\operatorname{tr}[\rho f_{\mathcal{S}}(x)]\in\mathbb{C}.
$$

Framed quantum observables

For any $\mathsf{E}_{\mathcal{R}} : \mathcal{F}(\Sigma) \to B(\mathcal{H}_{\mathcal{R}})$ and $f : \Sigma \to B(\mathcal{H}_{\mathcal{S}})$ such that $\Sigma \ni x \mapsto \text{tr}[\rho f_S(x)] \in \mathbb{C}$

are *integrable* for any state $\rho \in S(H_S)$, the operator

$$
\int_{\Sigma} d\mathsf{E}_{\mathcal{R}}(x) \otimes f(x) \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})
$$

$$
\mathcal{T}(\mathcal{H}_{\mathcal{R}}\otimes\mathcal{H}_{\mathcal{S}})\ni\omega\otimes\rho\mapsto\int_{\Sigma}d\mu_{\omega}^{\mathsf{E}_{\mathcal{R}}}(x)\operatorname{tr}[\rho f_{\mathcal{S}}(x)]\in\mathbb{C}.
$$

Framed quantum observables

For any $\mathsf{E}_{\mathcal{R}} : \mathcal{F}(\Sigma) \to B(\mathcal{H}_{\mathcal{R}})$ and $f : \Sigma \to B(\mathcal{H}_{\mathcal{S}})$ such that $\Sigma \ni x \mapsto \text{tr}[\rho f_S(x)] \in \mathbb{C}$

are *integrable* for any state $\rho \in S(H_S)$, the operator

$$
\int_{\Sigma} d\mathsf{E}_{\mathcal{R}}(x) \otimes f(x) \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})
$$

$$
\mathcal{T}(\mathcal{H}_{\mathcal{R}}\otimes\mathcal{H}_{\mathcal{S}})\ni\omega\otimes\rho\mapsto\int_{\Sigma}d\mu_{\omega}^{\mathsf{E}_{\mathcal{R}}}(x)\operatorname{tr}[\rho f_{\mathcal{S}}(x)]\in\mathbb{C}.
$$

General framed observables

For any $\mathbb{E}_{\mathcal{R}} : L^{\infty}(\Sigma, \mu) \to X_{\mathcal{R}}$ and $f : \Sigma \to X_{\mathcal{S}}$ such that $\Sigma \ni x \mapsto f(x)[t_{\mathcal{S}}] \in \mathbb{R}$

are *integrable* for any $t_S \in (X_S)_*$, the operator

$$
\int_{\Sigma} d\hat{\mathsf{E}}_{\mathcal{R}}(x) \otimes f(x) \in X_{\mathcal{R}} \otimes X_{\mathcal{S}}
$$

$$
(X_{\mathcal{R}})_*\odot(X_{\mathcal{S}})_*\ni t_{\mathcal{R}}\otimes t_{\mathcal{S}}\mapsto \int_{\Sigma}d\hat{\mathsf{E}}_{\mathcal{R}}[t_{\mathcal{R}}](x)f(x)[t_{\mathcal{S}}]d\mu\in\mathbb{R}.
$$

Relational interactions

For $\Sigma \cong G/H$ and $\sigma : G/H \to G$ (equivariant, Borel) we define

$$
\mathbb{F}_{\sigma}^{\mathcal{R}}(A) := \int_{G/H} d\mathsf{E}(x) \otimes \sigma(x).A \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}.
$$
 (1)

For $G = P$ (Poincar'e) and $H = O(1, 3)$ (Lorentz) consider

$$
\sigma: P/O(1,3) \cong \mathbb{M}^4 \ni x \mapsto (x, \hat{\sigma}(x)) \in \mathbb{M}^4 \rtimes O(1,3) \cong P.
$$

Section $\hat{\sigma}$: $\mathbb{M}^4 \to O(1, 3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $\mathfrak{P}^{\mathcal{R}}_{\sigma}$.

Relational interactions

For $\Sigma \cong G/H$ and $\sigma : G/H \to G$ (equivariant, Borel) we define

$$
\mathbf{\Psi}_{\sigma}^{\mathcal{R}}(A) := \int_{G/H} d\mathsf{E}(x) \otimes \sigma(x) . A \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}.
$$
 (1)

For $G = P$ (Poincar'e) and $H = O(1, 3)$ (Lorentz) consider

$$
\sigma: P/O(1,3) \cong \mathbb{M}^4 \ni x \mapsto (x, \hat{\sigma}(x)) \in \mathbb{M}^4 \rtimes O(1,3) \cong P.
$$

Section $\hat{\sigma}$: $\mathbb{M}^4 \to O(1, 3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $\mathfrak{P}^{\mathcal{R}}_{\sigma}$.

Relational interactions

For $\Sigma \cong G/H$ and $\sigma : G/H \to G$ (equivariant, Borel) we define

$$
\mathbf{\Psi}_{\sigma}^{\mathcal{R}}(A) := \int_{G/H} d\mathsf{E}(x) \otimes \sigma(x).A \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}.
$$
 (1)

For $G = P$ (Poincar'e) and $H = O(1, 3)$ (Lorentz) consider

 $\sigma: P/O(1, 3) \cong M^4 \ni x \mapsto (x, \hat{\sigma}(x)) \in M^4 \rtimes O(1, 3) \cong P.$

Section $\hat{\sigma}$: $\mathbb{M}^4 \to O(1,3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $\mathfrak{P}^{\mathcal{R}}_{\sigma}$.

Relational interactions

For $\Sigma \cong G/H$ and $\sigma : G/H \to G$ (equivariant, Borel) we define

$$
\mathbf{\Psi}_{\sigma}^{\mathcal{R}}(A) := \int_{G/H} d\mathsf{E}(x) \otimes \sigma(x).A \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}.
$$
 (1)

For $G = P$ (Poincar'e) and $H = O(1, 3)$ (Lorentz) consider

$$
\sigma: P/O(1,3) \cong \mathbb{M}^4 \ni x \mapsto (x, \hat{\sigma}(x)) \in \mathbb{M}^4 \rtimes O(1,3) \cong P.
$$

Section $\hat{\sigma}$: $\mathbb{M}^4 \to O(1, 3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $\mathfrak{P}^{\mathcal{R}}_{\sigma}$.

Relational interactions

For $\Sigma \cong G/H$ and $\sigma : G/H \to G$ (equivariant, Borel) we define

$$
\mathbf{\Psi}_{\sigma}^{\mathcal{R}}(A) := \int_{G/H} d\mathsf{E}(x) \otimes \sigma(x).A \in B(\mathcal{H}_{\mathcal{R}} \otimes \mathcal{H}_{\mathcal{S}})^{G}.
$$
 (1)

For $G = P$ (Poincar'e) and $H = O(1, 3)$ (Lorentz) consider

$$
\sigma: P/O(1,3) \cong \mathbb{M}^4 \ni x \mapsto (x, \hat{\sigma}(x)) \in \mathbb{M}^4 \rtimes O(1,3) \cong P.
$$

Section $\hat{\sigma}$: $\mathbb{M}^4 \to O(1, 3)$ can be interpreted as encoding interaction between frame and system, reflected by relativization map $\mathcal{F}_{\sigma}^{\mathcal{K}}$.

Relational Process Theories

The relativization construction can be seen as a functor

$$
\Psi: \mathbf{Frm}_G \times \mathbf{Rep}_G \ni (\mathcal{R}, \mathcal{S}) \mapsto B(\mathcal{H}_\mathcal{S})^\mathcal{R} \subset B(\mathcal{H}_\mathcal{R} \otimes \mathcal{H}_\mathcal{S})^G \in \mathbf{Equiv}_G,
$$

where category \mathbf{Frm}_G is defined with $\mathcal{R} \to \mathcal{R}$ ^t given by

$$
B(\mathcal{H}_{\mathcal{R}}) \xrightarrow{\psi} B(\mathcal{H}_{\mathcal{R}'})
$$

\n
$$
\mathsf{E}_{\mathcal{R}} \uparrow \qquad \qquad \mathsf{E}_{\mathcal{R}'} \uparrow
$$

\n
$$
\mathcal{B}(G) \xleftarrow{h_{\cdot -}} \mathcal{B}(G)
$$

and i_G : **Equiv**_G \hookrightarrow **Rep**_G is a subcategory of equivariant channels.

Relational Process Theories

The relativization construction can be seen as a functor

$$
\Psi: \mathbf{Frm}_G \times \mathbf{Rep}_G \ni (\mathcal{R}, \mathcal{S}) \mapsto B(\mathcal{H}_\mathcal{S})^\mathcal{R} \subset B(\mathcal{H}_\mathcal{R} \otimes \mathcal{H}_\mathcal{S})^G \in \mathbf{Equiv}_G,
$$

where category \mathbf{Frm}_G is defined with $\mathcal{R} \to \mathcal{R}$ given by

$$
B(\mathcal{H}_{\mathcal{R}}) \longrightarrow B(\mathcal{H}_{\mathcal{R}'})
$$

\n
$$
\begin{array}{ccc}\n\mathsf{E}_{\mathcal{R}} & \mathsf{E}_{\mathcal{R}'} \\
\hline\n\mathcal{B}(G) & \xrightarrow{h_{-}} & \mathcal{B}(G)\n\end{array}
$$

and i_G : **Equiv**_G \hookrightarrow **Rep**_G is a subcategory of equivariant channels.

Relational Process Theories

The relativization construction can be seen as a functor

$$
\Psi: \mathbf{Frm}_G \times \mathbf{Rep}_G \ni (\mathcal{R}, \mathcal{S}) \mapsto B(\mathcal{H}_\mathcal{S})^\mathcal{R} \subset B(\mathcal{H}_\mathcal{R} \otimes \mathcal{H}_\mathcal{S})^G \in \mathbf{Equiv}_G,
$$

where category \mathbf{Frm}_G is defined with $\mathcal{R} \to \mathcal{R}$ given by

$$
B(\mathcal{H}_{\mathcal{R}}) \longrightarrow B(\mathcal{H}_{\mathcal{R}'})
$$

\n
$$
\begin{array}{ccc}\n\mathsf{E}_{\mathcal{R}} & \mathsf{E}_{\mathcal{R}'} \\
\hline\n\mathcal{B}(G) & \xrightarrow{h_{-}} & \mathcal{B}(G)\n\end{array}
$$

and i_G : **Equiv**_{G} \hookrightarrow **Rep**_G is a subcategory of equivariant channels.

Relativization map $\mathcal{F}^{\mathcal{R}}$ can be seen as a natural transformation

 $\Psi : i_G \Rightarrow B(\mathcal{H}_{\mathcal{R}}) \otimes i_G$

which follows from the commutativity of the following diagram

Relativization map $\mathcal{F}^{\mathcal{R}}$ can be seen as a natural transformation

 $\mathbf{F}: i_G \Rightarrow B(\mathcal{H}_{\mathcal{R}}) \otimes i_G$

which follows from the commutativity of the following diagram

Thank you for your attention!