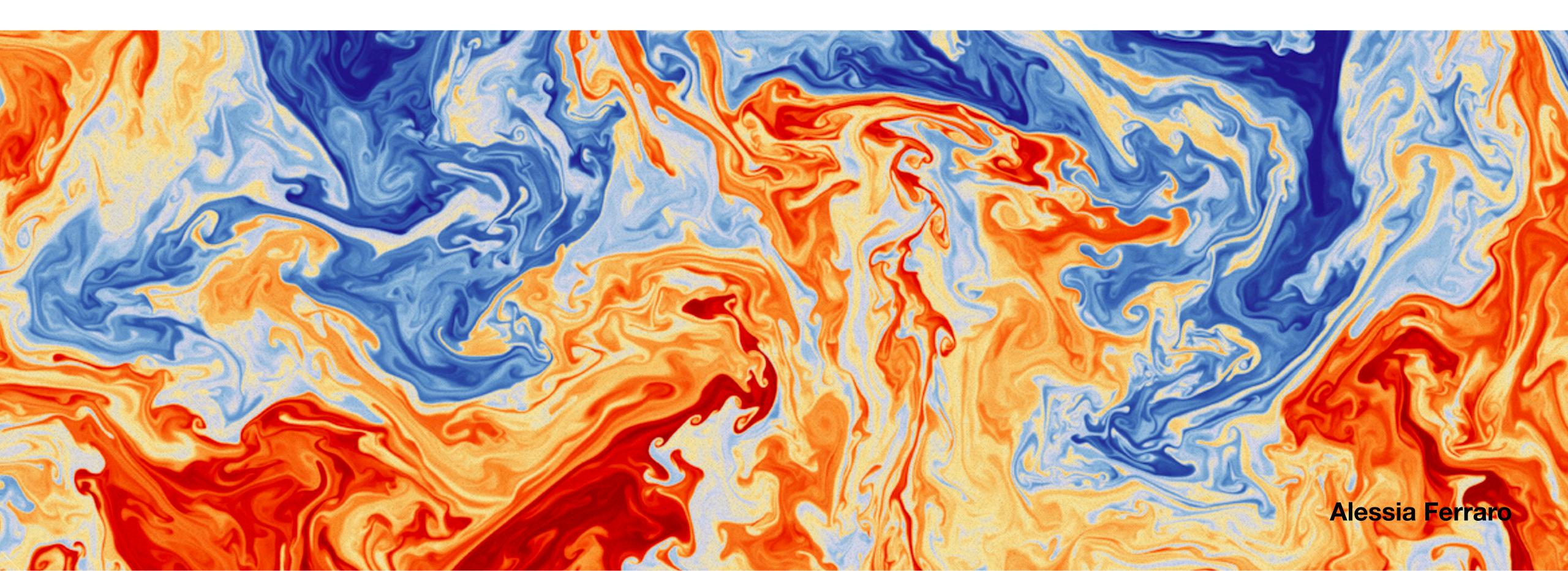
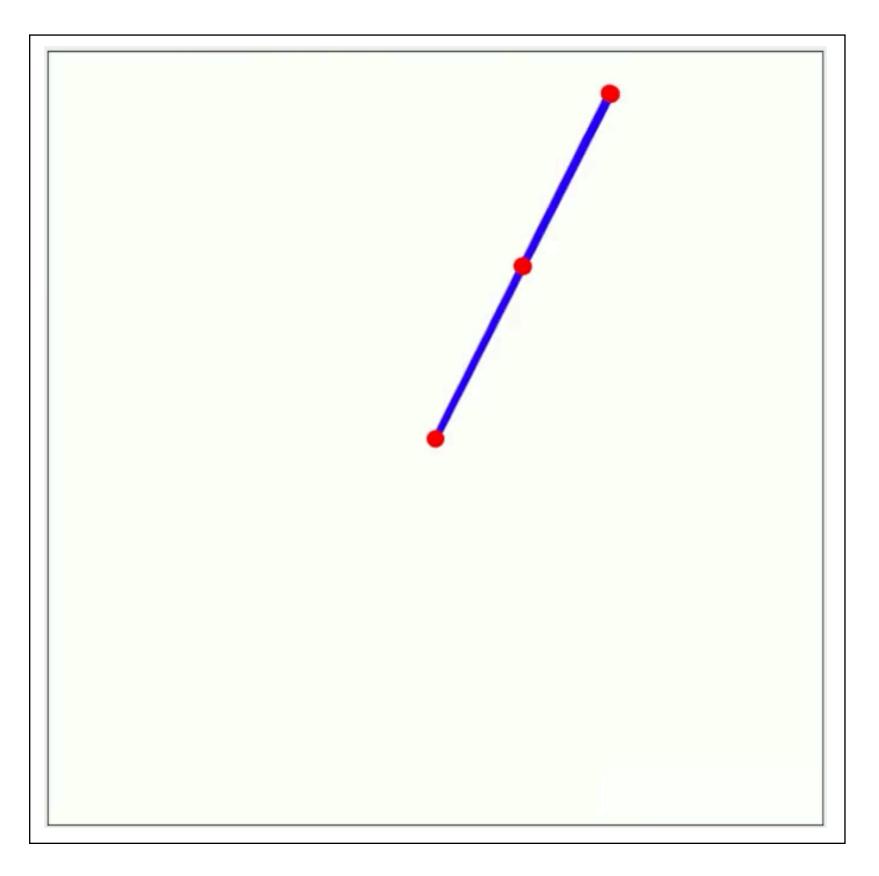
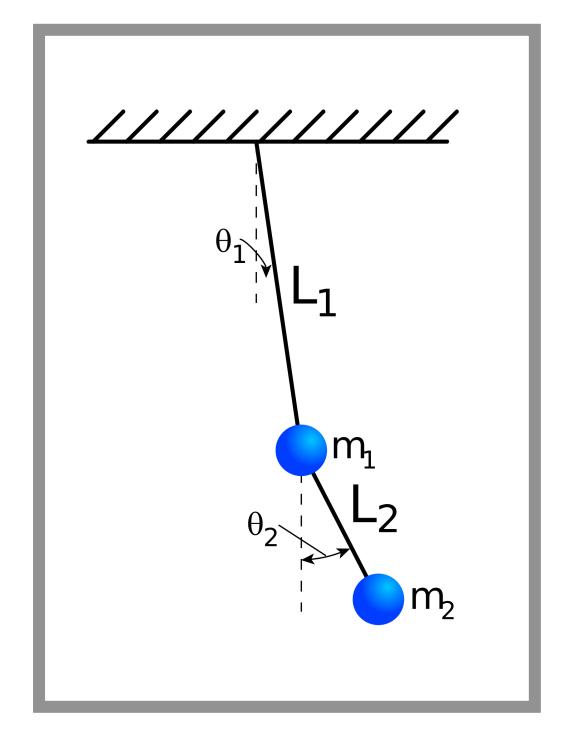
A Soft Introduction to Dynamical Systems Nordita Day of Open Doors



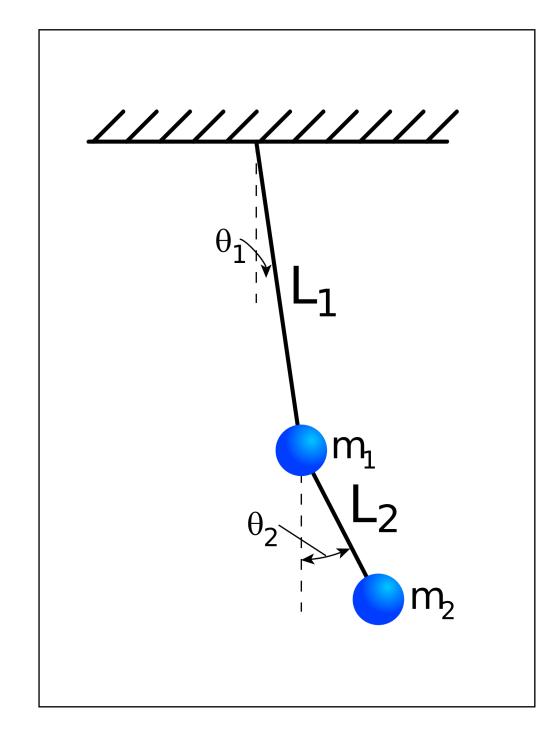


By Ari Rubinsztejn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php? curid=75448143



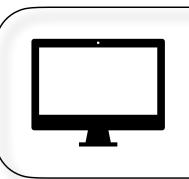
 $(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_2 - \theta_1) =$ $= m_2 l_2 \dot{\theta}_2^2 \sin(\theta_2 - \theta_1) - (m_1 + m_2) g \sin \theta_1$

 $l_2\ddot{\theta}_2 + l_1\ddot{\theta}_1\cos(\theta_2 - \theta_1) = -l_1\dot{\theta}_1^2\sin(\theta_2 - \theta_1) - g\sin\theta_2$



 $(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_2 - \theta_1) =$ $= m_2 l_2 \dot{\theta}_2^2 \sin(\theta_2 - \theta_1) - (m_1 + m_2) g \sin \theta_1$

 $l_2\ddot{\theta}_2 + l_1\ddot{\theta}_1\cos(\theta_2 - \theta_1) = -l_1\dot{\theta}_1^2\sin(\theta_2 - \theta_1) - g\sin\theta_2$



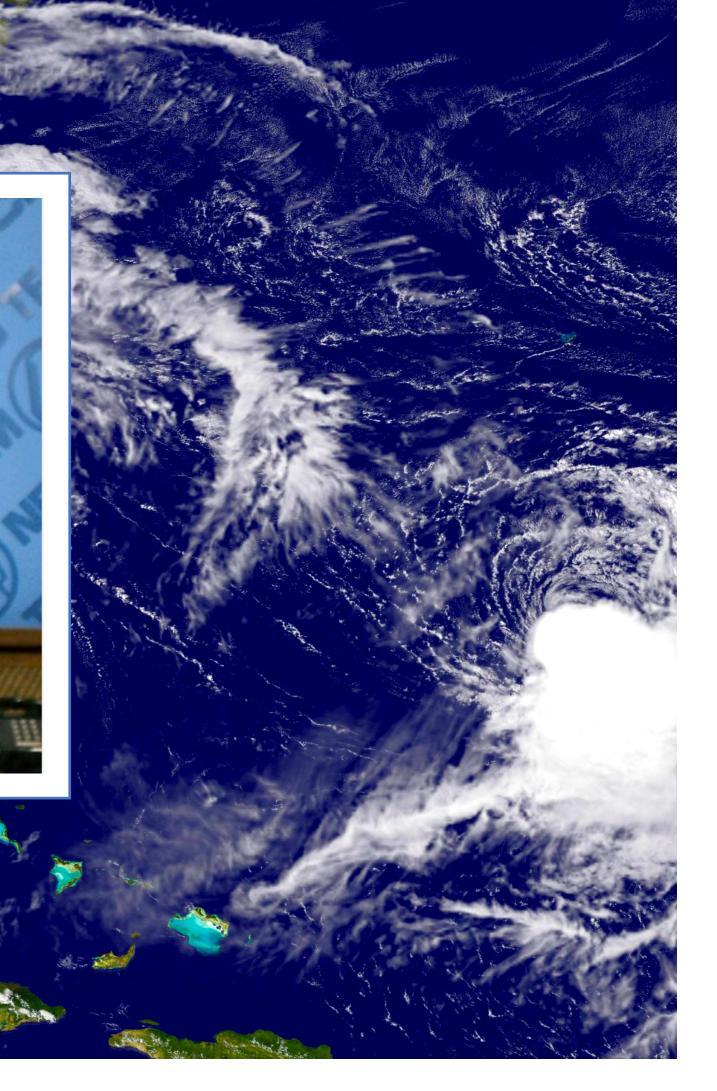
https://web.mit.edu/jorloff/www/chaosTalk/ double-pendulum/double-pendulum-en.html

How well can we predict the future ?

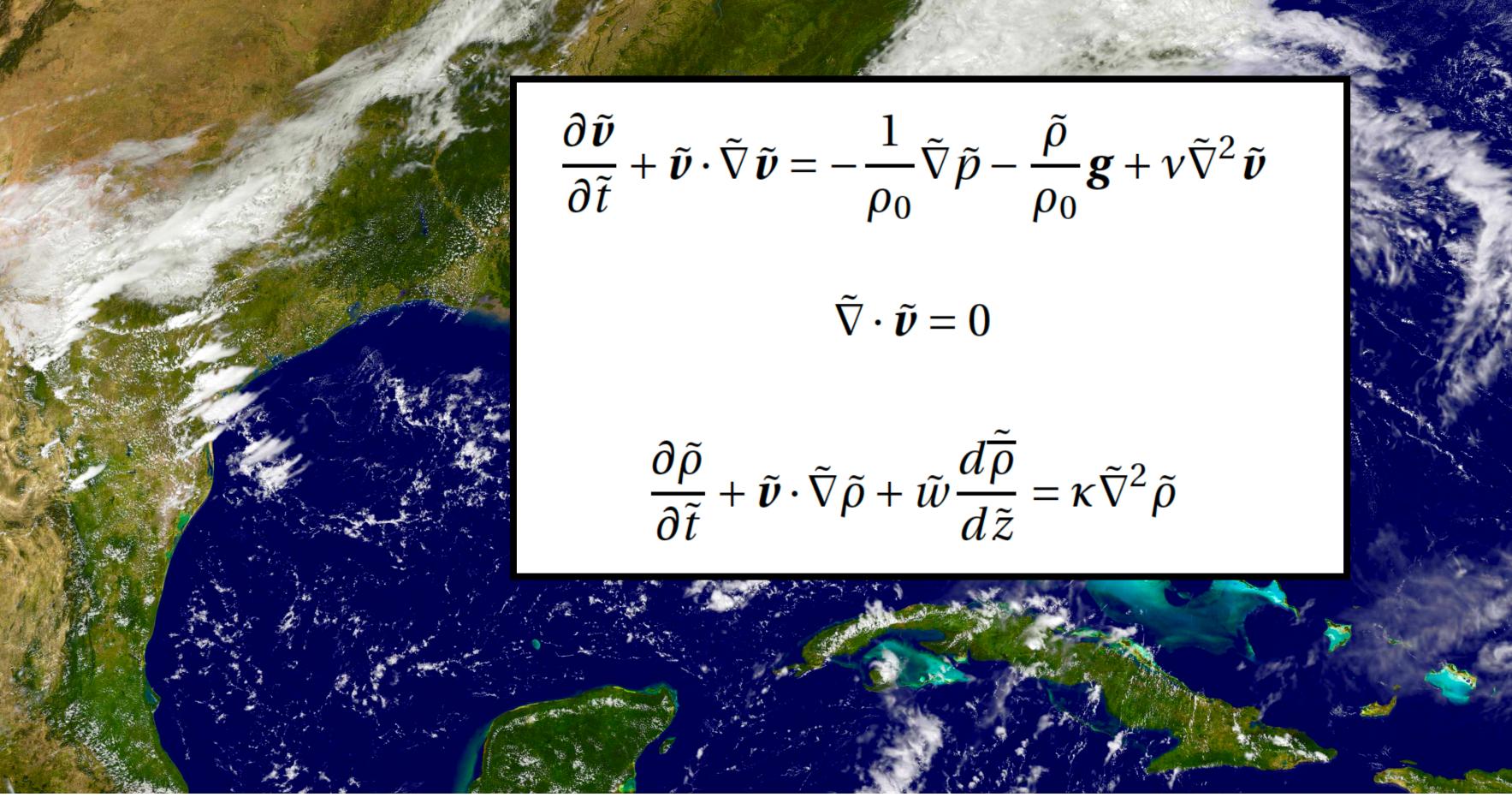
How well can we predict the future ?

(Or better ... for how long?)

IT WILL BE SUNNY UNLESS IT RAINS



Boussinesq approximation



 $\frac{\partial \tilde{\boldsymbol{v}}}{\partial \tilde{t}} + \tilde{\boldsymbol{v}} \cdot \tilde{\nabla} \tilde{\boldsymbol{v}} = -\frac{\partial \tilde{v}}{\partial \tilde{t}}$

 $\frac{\partial \tilde{\rho}}{\partial \tilde{t}} + \tilde{\boldsymbol{v}} \cdot \tilde{\nabla} \tilde{\rho}$

$$\frac{1}{\rho_0} \tilde{\nabla} \tilde{p} - \frac{\tilde{\rho}}{\rho_0} \boldsymbol{g} + \nu \tilde{\nabla}^2 \tilde{\boldsymbol{v}}$$

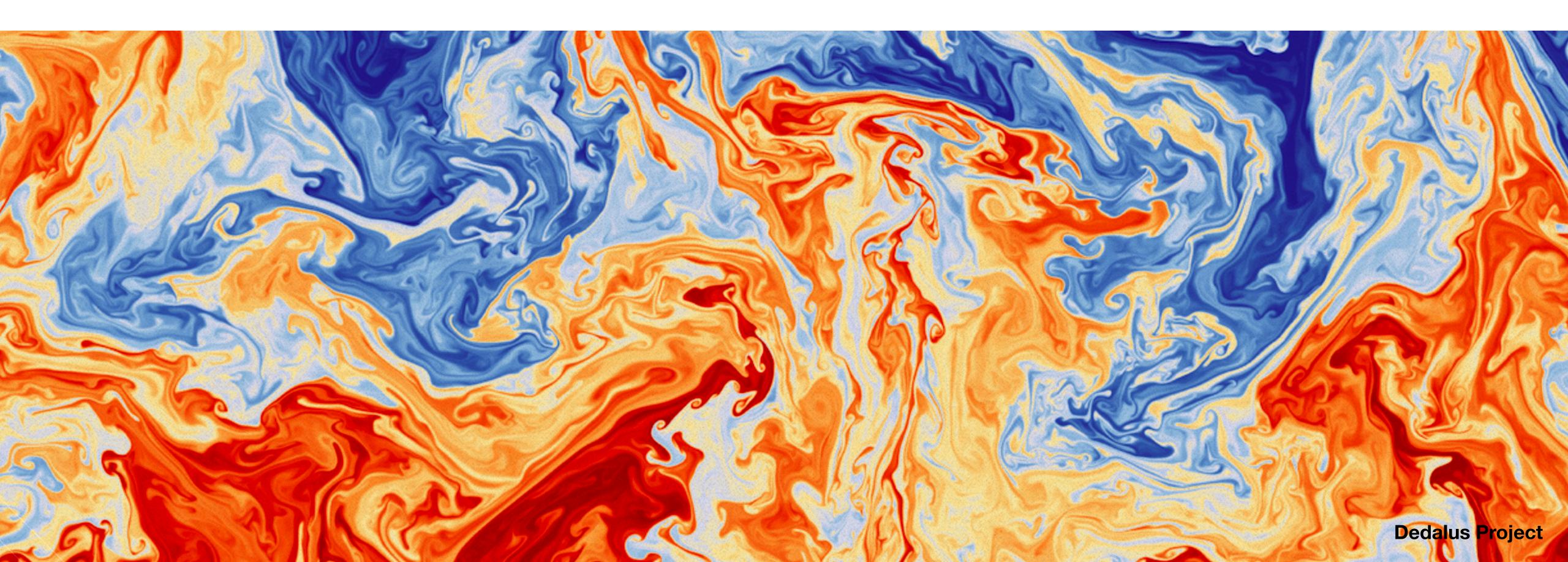
$\tilde{\nabla} \cdot \tilde{\boldsymbol{v}} = 0$

$$\tilde{\psi} + \tilde{w} \frac{d\tilde{\rho}}{d\tilde{z}} = \kappa \tilde{\nabla}^2 \tilde{\rho}$$

Lorenz System

From Oberbeck–Boussinesq approximation (describing Rayleigh-Benard convection)

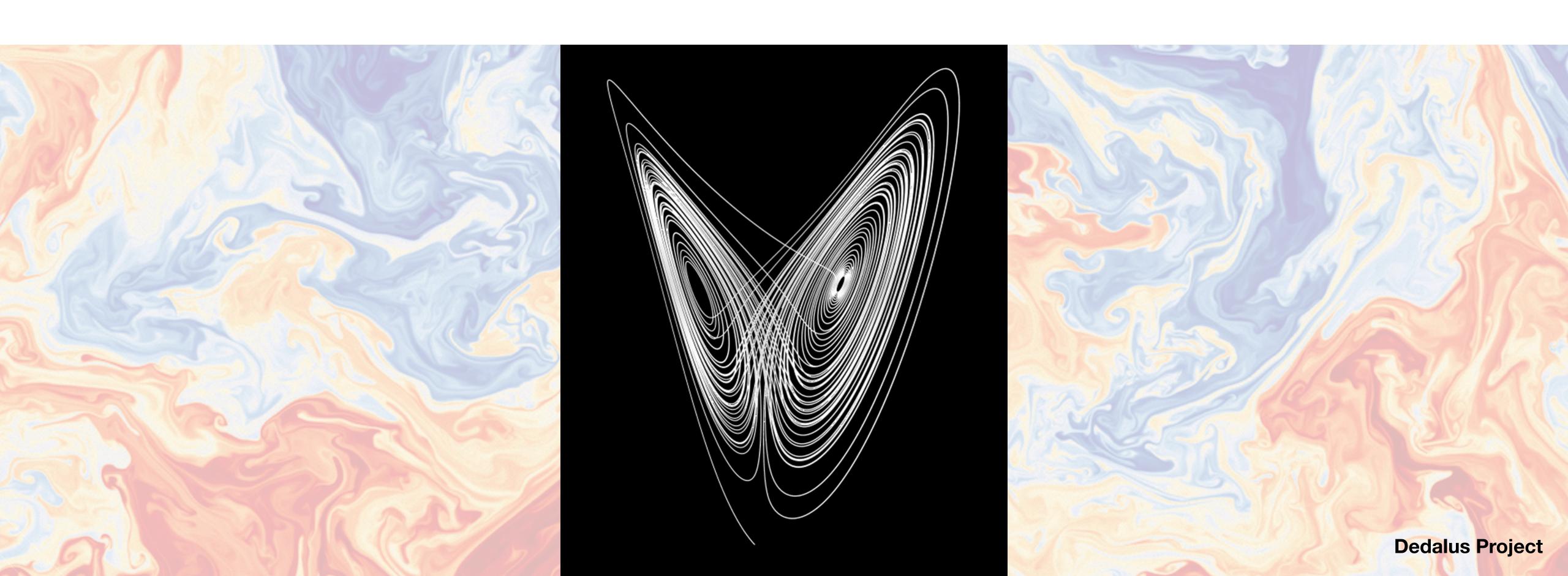
$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = x(\rho - z) - y$ $\dot{z} = xy - \beta z$

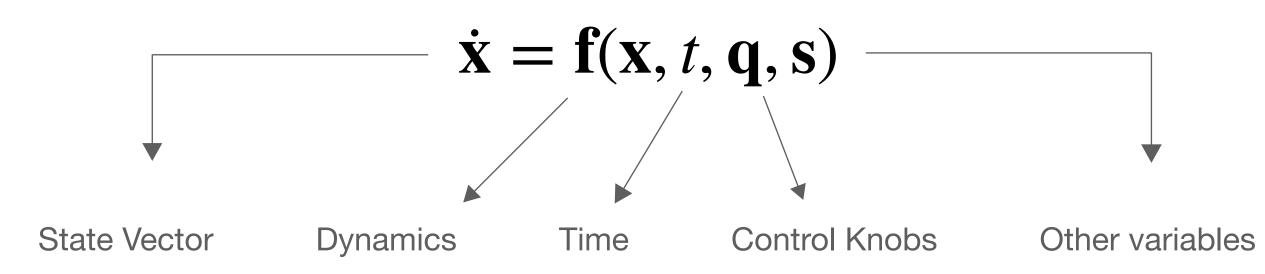


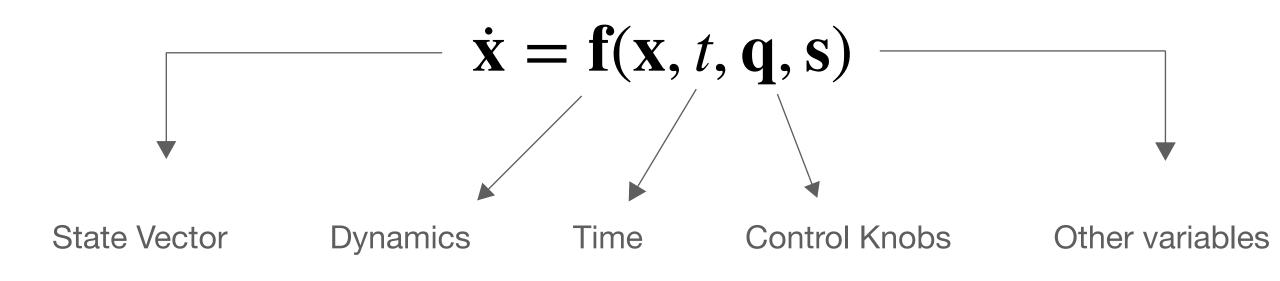
Lorenz System

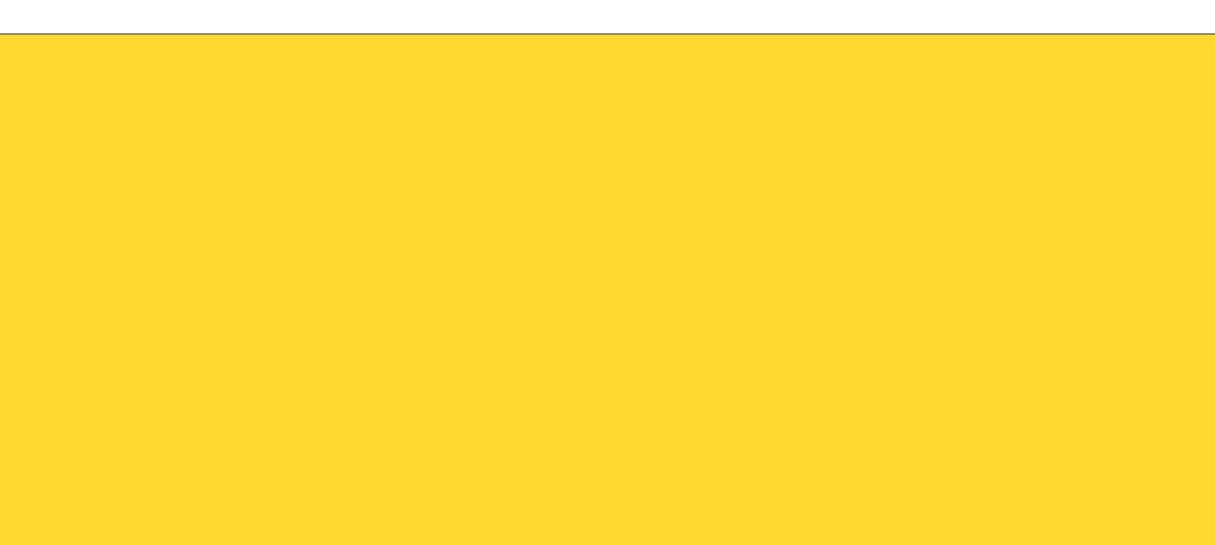
From Oberbeck–Boussinesq approximation (describing Rayleigh-Benard convection)

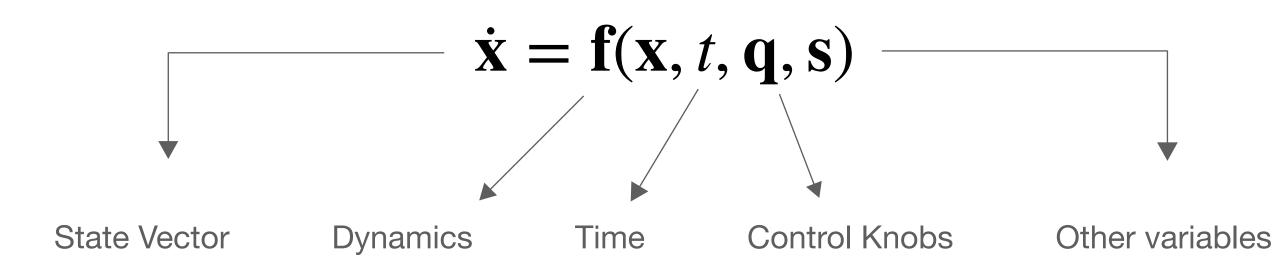
$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = x(\rho - z) - y$ $\dot{z} = xy - \beta z$

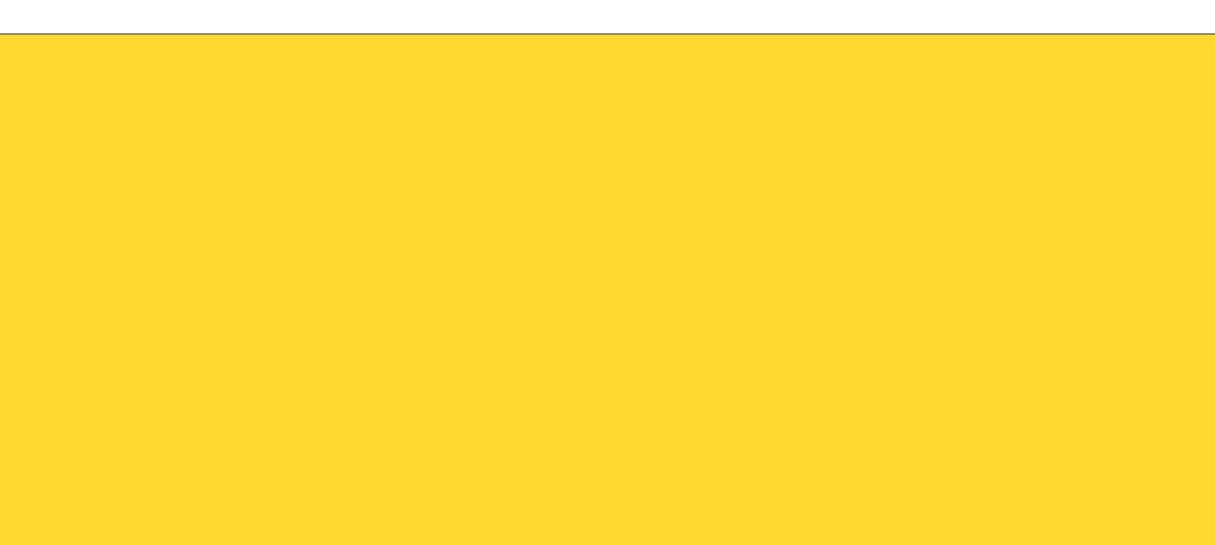


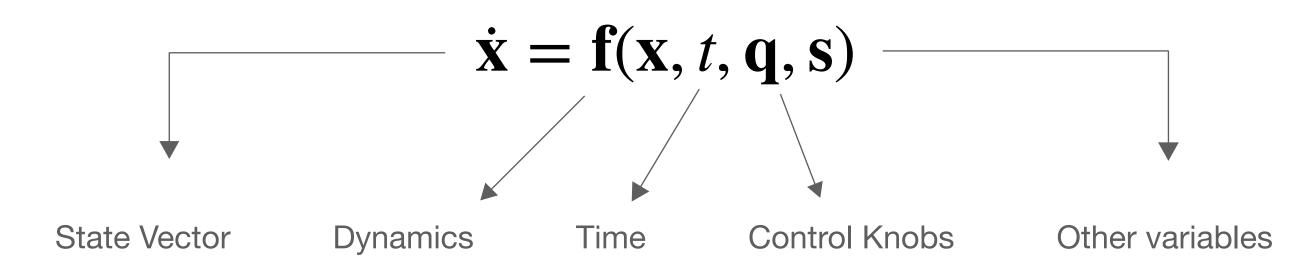


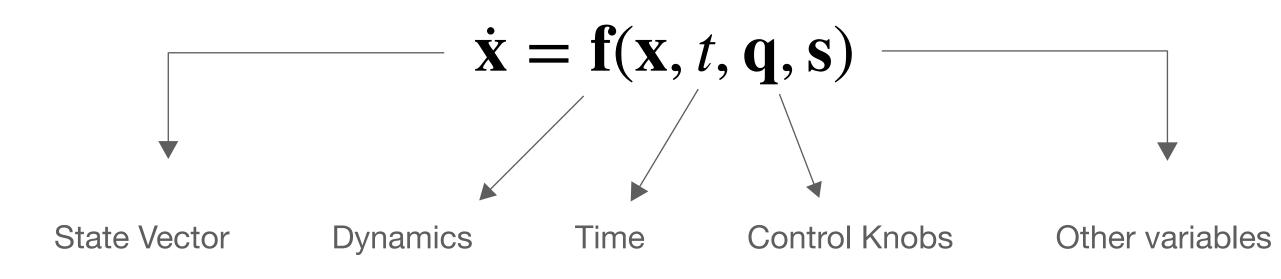


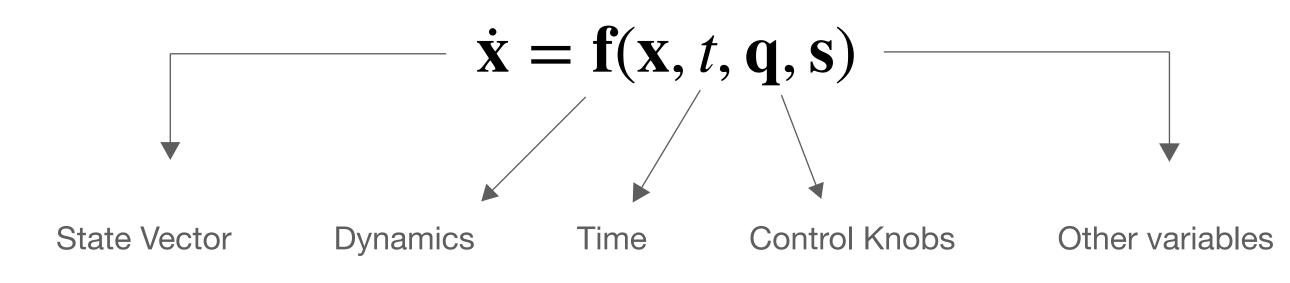


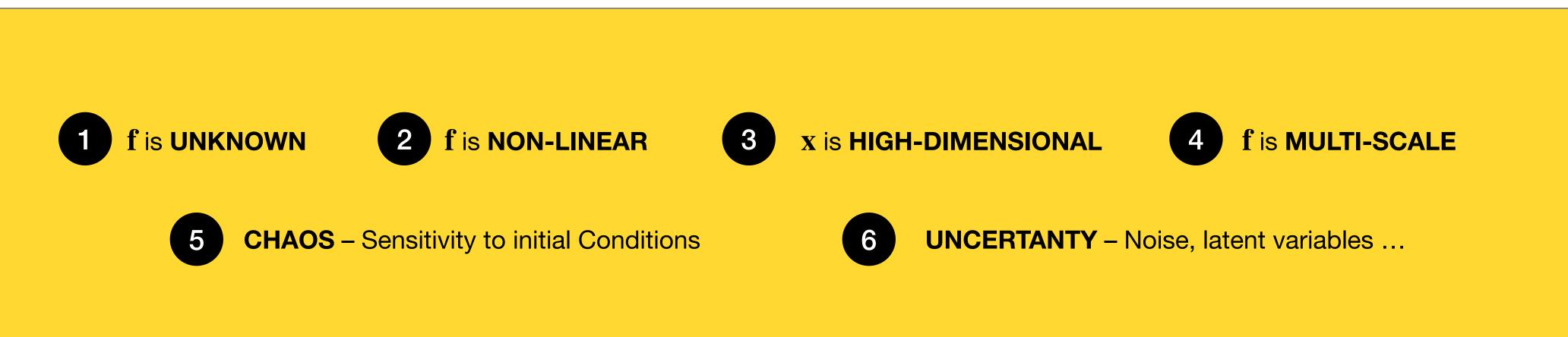


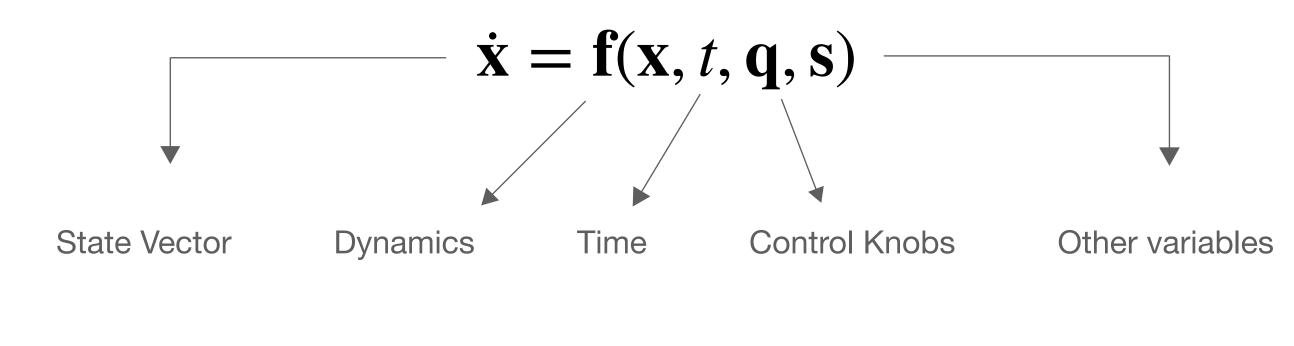


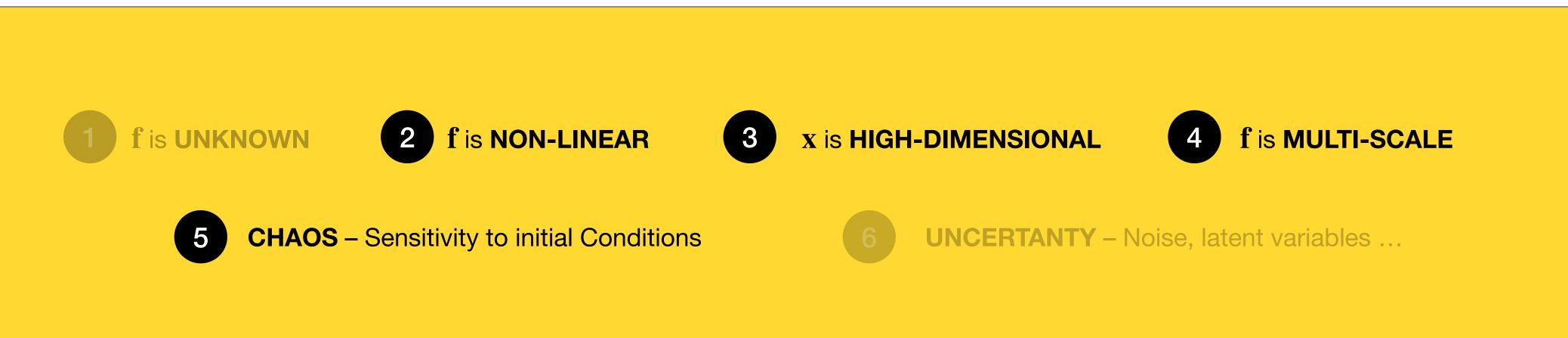








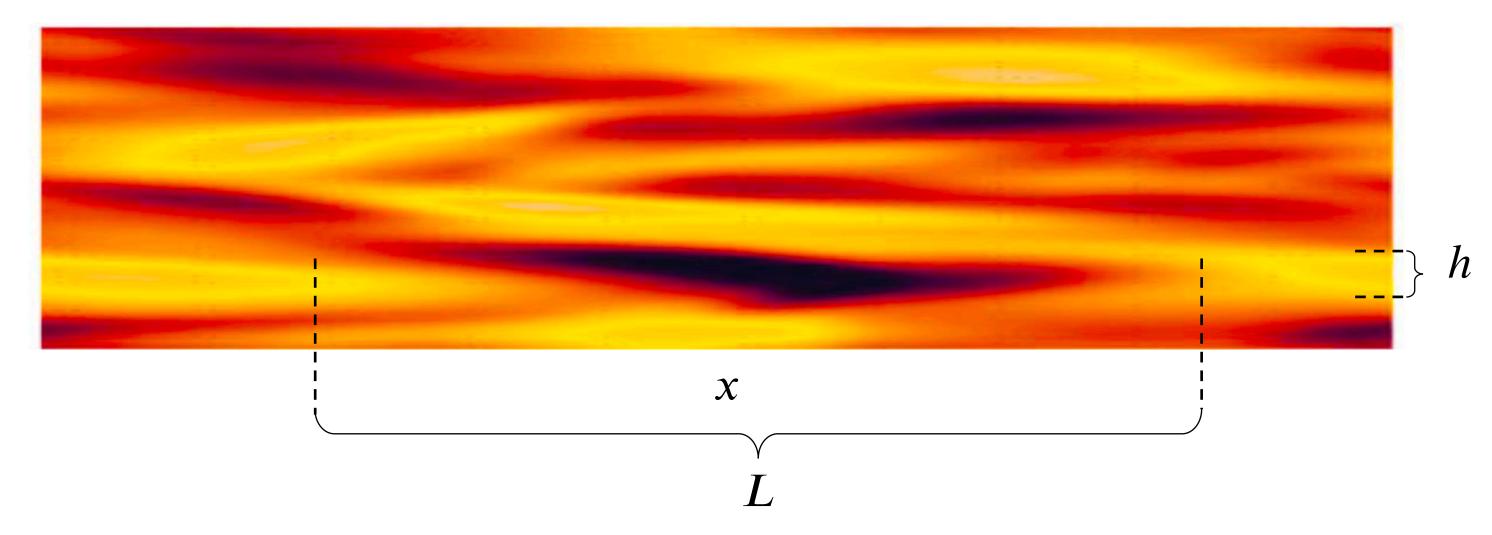




MY RESEARCH

Strongly Stratified Flows

$$Fr = \frac{U}{NL} \to 0$$
 $Re = \frac{UL}{v} \to \infty$



 \boldsymbol{Z}

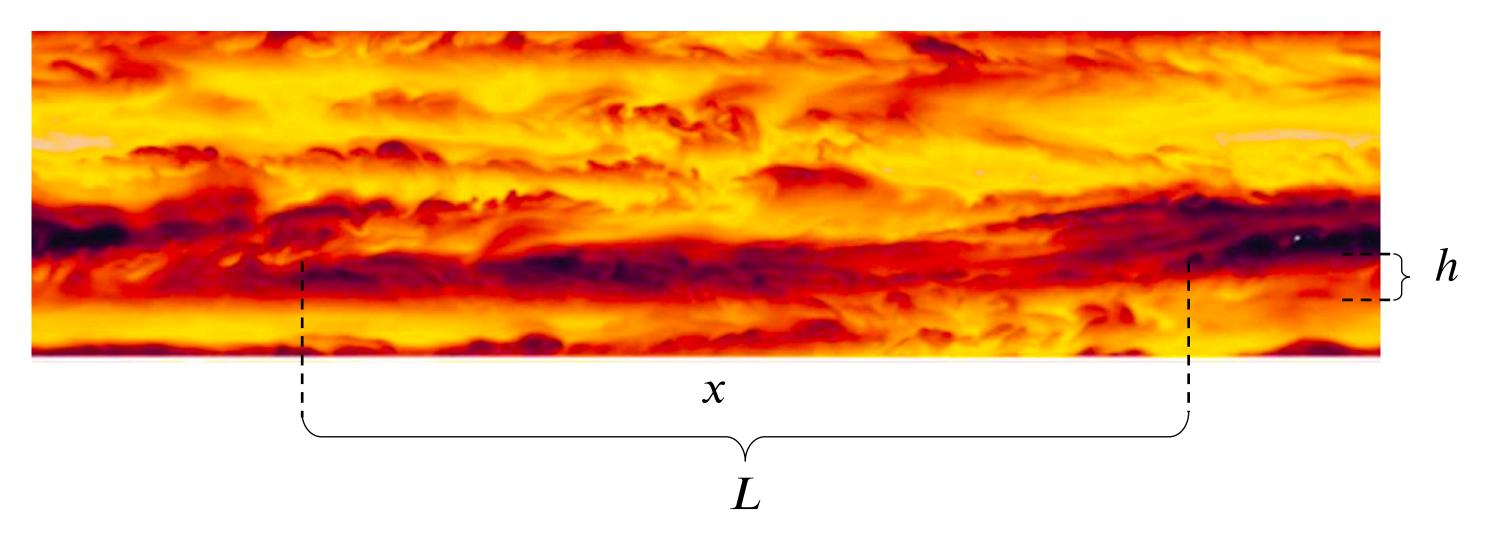
Snapshot from DNS of density fluctuations in a vertical plane (Brethouwer et al. JFM 2007)

 $ReFr^2 > 1$ Strongly stratified turbulence

 $Fr \simeq 0.015$ $Re = 1.2 \ 10^3$

Strongly Stratified Flows

$$Fr = \frac{U}{NL} \to 0$$
 $Re = \frac{UL}{v} \to \infty$



 \boldsymbol{Z}

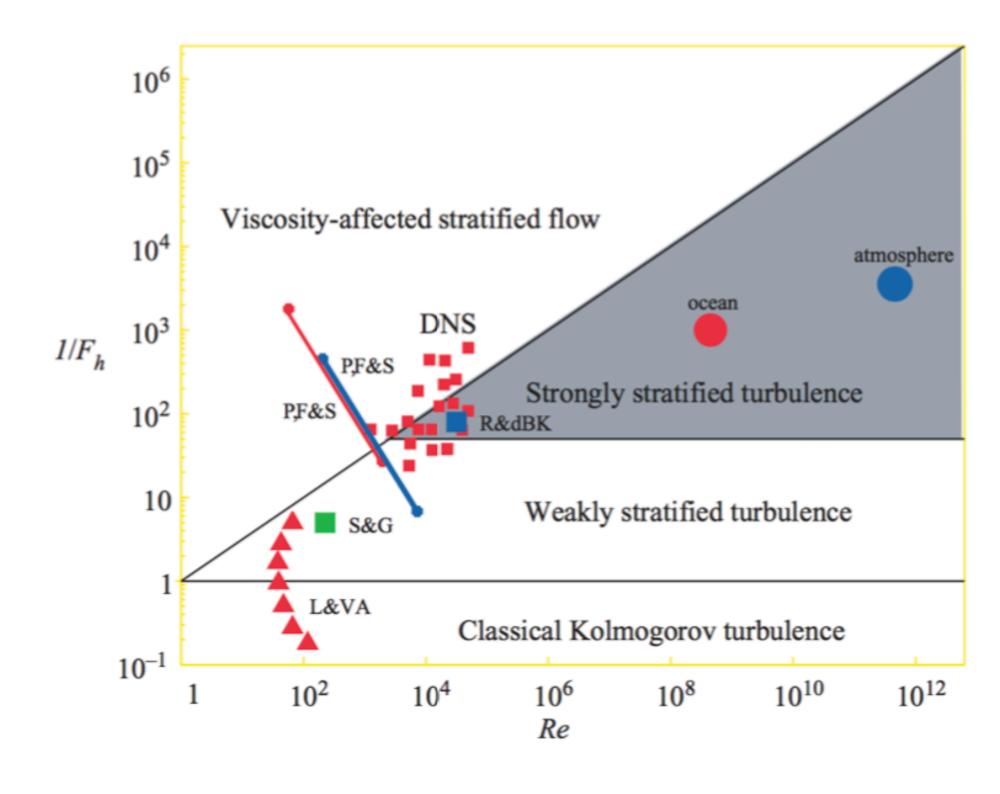
Snapshot from DNS of density fluctuations in a vertical plane (Brethouwer et al. JFM 2007)

 $ReFr^2 > 1$ Strongly stratified turbulence

 $Fr \simeq 0.015$ $Re = 1.2 \ 10^3$

Strongly Stratified Flows

The different regimes of stratified flows as a function of the Reynolds number and the horizontal Froude number



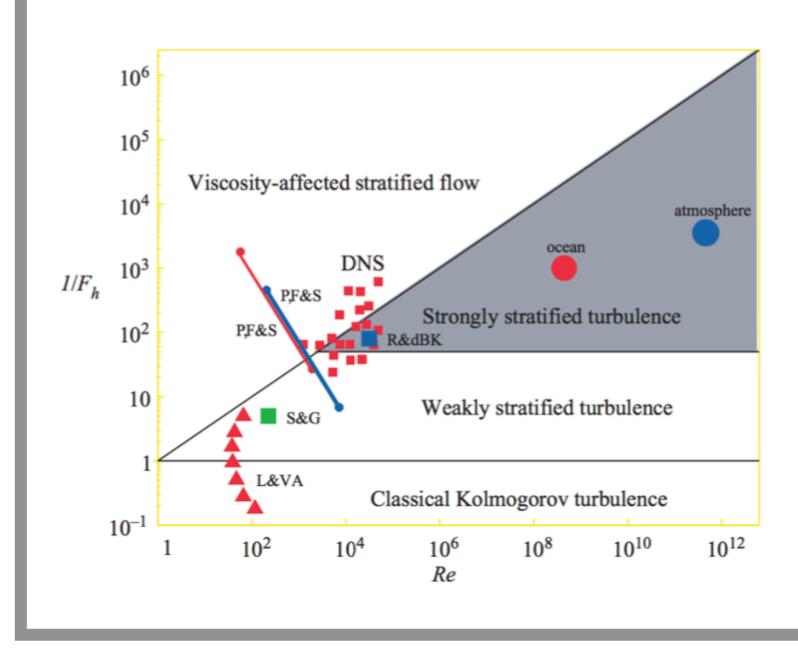
(Brethouwer et al. JFM 2007)

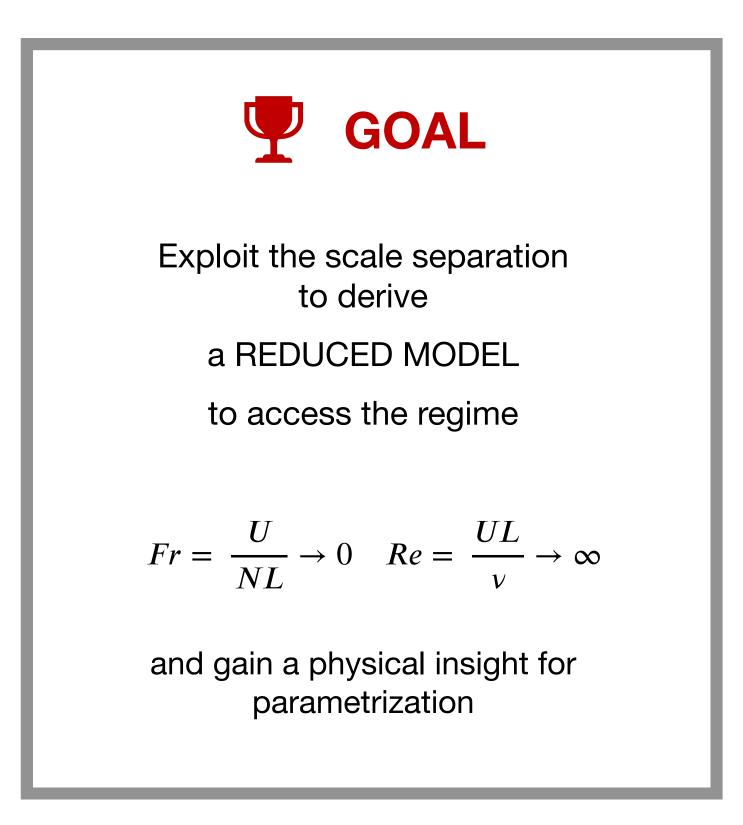
Modelling and Computational Challenges

QL Reduced Model

Modelling and Computational Challenges

The different regimes of stratified flows as a function of the Reynolds number and the horizontal Froude number





Thank you for your attention

