A glimpse of Network Science Structure and Dynamic

Nordita Open day, Stockholm 20th Nov 2023

Hanlin Sun WINQ Research fellow NORDITA

Wallenberg Initiative on Networks and Quantum information

Networks/Graphs

Networked data

Biological networks Ecological networks (Epidemic) Contact networks

Social networks Urban networks Financial network

Random graph theory to network theory

Random graph theory, extensive study on Erdös-Renyi graph

- ER network: G(N, p) or G(N, m)
- Poisson degree distribution, $\langle k \rangle = \sigma^2$
- Robustness

•

Real network?

- Very robust (WWW)
- Huge fluctuation of degrees (scalefree)
- Power-law degree distribution $(2 < \gamma < 3)$

.

Network structure

How to characterise the network structure?

Size: number of nodes/links

Degree: Max, min, average, distribution etc

Diameter: small world?

Centrality: How important is a node? Many measures Correlation: Preference of connection (High degree-low degree or high degree-high degree?) Modularity: are there communities that are more densely connected?

Higher-order interaction: Co-authorship as an example Multilayer structure: Transport network between cities Pre-requisite of functioning of the network: macroscopic connectivity

Dynamical processes taking place on the network

Diffusion (transportation) Spreading of virus (Epidemiology) Synchronisation (brain network, power system)

Social processes (political opinion, innovation)

Network structure and network function

The interplay between network structure and network function?

What type of network is more risky in a pandemic?
Which node (individual) is more risky in a epidemic spreading process?
How long it takes to diffuse?
The robustness of a network under random/targeted attack?
What is the character of an epidemic outbreak on a network? Gradual/Abrupt?

.

Network robustness

....

Imagine a network is experiencing random failure on nodes/links

Internet: servers are failed/connection between servers breaks down Transport network: Road is blocked/Airport is closed

Can this network remain functioning?

A network is more robust if it remains functioning at a higher level of random failure

A network is functioning if it is "largely" connected. The size of largest connected part is comparable to the entire network.

Percolation on (sparse) networks

Percolation theory: evaluate the robustness of a network against random failure

Percolation on networks

Percolation theory: evaluate the robustness of a network against random failure

Percolation on networks

Percolation theory: evaluate the robustness of a network against random failure

Percolation (on lattices)

- 2-dimensional lattice
- Links are occupied (connected) with probability *p*

Percolation on networks

Mathematically,

- Nodes/Links are removed with probability q = 1 p
- *R*: fraction of nodes in the giant component $R = \lim_{N \to \infty} \frac{N_{GC}}{N}$

Non-percolating phase

- Phase transition: Percolating phase and non-percolating phase
- Nodes in the giant components are regarded functioning

Percolation and Epidemic spreading

Mathematically,

Non-percolating phase

T: transmissibility, i.e., probability that an infection signal is sent via a link

Percolation and Epidemic spreading

T: transmissibility, i.e., probability that an infection signal is sent via a link

Link percolation on Poisson network

$$S = \sum_{k} \frac{kP(k)}{\langle k \rangle} \left[1 - (1 - pS)^{k-1} \right] = 1 - G_1(1 - pS)$$

$$R = \sum_{k} P(k) \left[1 - \left(1 - pS \right)^{k} \right] = 1 - G_{0}(1 - pS)$$

Poisson network: $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $S = 1 - G_1(1 - pS) = 1 - e^{-\lambda pS}$ **Critical condition**

$$\frac{\mathrm{d}}{\mathrm{d}S} S \Big|_{S=0} = \frac{\mathrm{d}}{\mathrm{d}S} (1 - e^{-\lambda p_c S}) \Big|_{S=0}$$
$$p_c = 1/\lambda = 1/\langle k \rangle$$

• The phase transition is continuous

Characterisation of the phase transition

Critical point $p = p_c$

Critical exponent

Order parameter *R*

$$R - R_c \sim (p - p_c)^{\beta}$$

Average (finite) cluster size $\langle s \rangle$

$$\langle s \rangle \sim p - p_c^{-\gamma}$$

Correlation length ξ (mean distance between nodes in the same cluster)

$$\langle \xi \rangle \sim p - p_c^{-\nu}$$

Size distribution

$$n_s \sim s^{-\tau} e^{-s/s^*}$$

 $\beta = 1/2$ Discontinuous hybrid transition

$$\beta = \frac{1}{3 - \alpha}$$
 Power-law degree distribution $2 < \alpha < 3$
$$\beta = \frac{1}{\alpha - 3}$$
 Power-law degree distribution $3 < \alpha < 4$

Current research on percolation

The research of percolation today?

Percolation on Multilayer networks

....

Percolation on Higher-order networks

K-core percolation Explosive percolation Weak percolation Homological percolation Dorogovtsev et al, PRL, 2006 Achlioptas et al, Science, 2009 Baxter et al, PRE, 2014 Bobrowski et al, PRE, 2020

Multilayer Networks

- General multilayer network
- Multiplex network
- Multi-slice network
- Network of network

Aggregation of multi Layered Graph of public Transport

Percolation on multilayer networks

- Multiplex networks: replica nodes
- Interdependent (node) percolation: A node is active if it is in the giant component in all layers
- Cascading failure: failure of a node in one layer will cause the failure in other layers
- Discontinuous phase transition

Beyond pairwise interactions

Hypergraphs

Simplicial complexes

Network with triadic interactions

Percolation on higher-order networks

- Discontinuous hybrid transitions
- Multiple transitions
- Bi-stability (epidemic spreading)
- Orbit diagram
- Unusual critical component (on networks with hierarchical structures)

•

Thank you!

For more information / collaboration / discussion, contact me:

hanlin.sun@su.se

Room 5208, Floor 5, NORDITA

Join NetPLACE for interesting talk and discussion!