Fading ergodicity
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1 Introduction and ETH ansatz @ [T"*@SSEEN 12
11
= The quantum chaos conjecture links the emergence of RM T 10
statistics in quantum many-body systems to chaotic dynamics
in their classical limit [1,2], 9
= RMT predictions also apply to the (spectral) statistics of sys- q
tems without classical counterparts [3-5]. }
Experiments on nonequilibrium dynamics of isolated systems g ] 17
typically cannot access spectral properties but can measure local 16
observables [6]. ; |
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The central role is played by the eigenstate thermalization hy- v
pothesis (ETH) [7-9], which: Fig. 2 Coarse-grained off-diagonal matrix elements of |(S%),.|* at
= simply explains the agreement between the observable expec- o = 0.86 and different L. Main panel: |(S%),m|2p vs @, where p o< 2%
tation values and the predictions of statistical ensembles [10], Dashed lines are fits to the Lorentzian function [Eq. (3)], from which we

extract I'. The red arrows highlight the weight accumulation (depletion)
at low (high) . Inset: Data collapse — |(S3)um|?pT vs @/T.

= originates from their analysis in random pure states [10] —
suggesting thermalization on a level of eigenstates.

Hamiltonian eigenstates H|n) = E,|n) are not random pure

states and hence (for eigenstates) We establish the , intermediate be-
» the ETH of an observable O contains non-trivial refinements tween the completely non-ergodic and conventional ETH
beyond the RMT limits and propose an observable-based precursor of the

» represent the structure function O(E) of the diagonals (at ergodicity breaking phase transition (EBT).

mean energy E = (E,+E,;)/2), and

» the envelope function f(E,®), where @ = E, — E,,, is the en-
ergy difference (A= 1).

The approach to EBT in physical systems is better understood
through spectral properties. Here, one can define:

= the Thouless energy 1" — distinguishes short- from long-range

These, combined with the random fluctuations R,;,, give rise to spectral statistics.

the conventional ETH ansatz [11],

= the mean level spacing A (Heisenberg energy) — short-range
statistics follow RMT predictions, while long-range do not,

(n|O|m) = O(E)Sppn+p(E) V2 f(E,0)Rpn. (1) with I" shrinking to A at EBT.
= Thouless time try, o< 1/T" and Heisenberg time tg o< 1/A.
The many-body density of states p(E) exponentially suppresses In the regime, the system remains ergodic
fluctuations with lattice size L. beyond conventional ETH, while fluctuations of the diagonal

and low-@ off-diagonal matrix elements

2 Motivation and ETH breakdown
3 Softening of ETH at small

For counterexamples, the ETH ansatz likely fails: (a) fluctua-
tions may decay polynomially with L, and (b) some eigenstates

(outliers) may not match microcanonical averages. — weaker = |n the non-ergodic regime, matrix element weight is expected
fc.)rms of E_TH that Mmay apply to: (i) mtegra.ble SBIETS (ii) to accumulate in the diagonal elements, c.f., sum rule
single particle chaos, (iii) many-body scars, (iv) Hilbert space 2
fragmentation. i Z 0 ‘2 —1 (2)
. . . . . . nm T )
— all incompatible with ergodicity and thermalization 9~
Here, we answer the fundamental questions: = Deviations from Eq. (1) occur despite the system being ergodic
= How and when does conventional ETH evolve into weaker forms and short-range level statistics following RMT predictions.
as ergodicity ? = The fluctuating part in Eq. (1) acquires @-dependence,
= How it relates to breakdown of RM T-like short-range statistics? p(E)"1? 5 Y(E,0—0,L) — p(E)~'/n,
= What happens to fluctuations near the ergodicity boundary? with 2 < 1 < oo in the regime.
. . = We consider a Lorentzian functional form of low-@ (A < @ <
Ergodicity breaking t y _ ] ..
N transition %/ [') matrix elements, with characteristic energy scale T,
. I — /w/ c.f., Thouless energy.
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. (@ T 7, (b) and, as a main result of our study,
a L
Fig. 1 scenario. (@) Divergence of the fluctuation expo- pr 1B
nent N as a function of the control parameter a, when approaching EBT at
o = 0. (b) While the Thouless time tty, is proportional to the Heisenberg Whenever Thouless energy increases as I' o< AS, with 0 < ¢ <1,
time ty at the transition point (¢t ~ fg), and it is much smaller than 7z in the system is still ergodic but the ETH does not hold in the con-
the conventional ETH regime (e.g., ttn ~ L?), it scales as ty, ~ (tg)Y, with ventional way and n =2/(1—C) > 2 and
0 <y < 1, when the boundary of ergodicity is approached. 1 = 2 when n diverges at EBT, at which '« A.

conventional ETH applies.
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4 Quantum Sun Model

We provide both analytical and numerical evi-
dence in the Quantum Sun Model [12-15], that
hosts EBT in the thermodynamic limit.

L L
H = Hj, + Z OCuijl(j)S)]C-—F Z hij- : (5)
j=1 j=1
= Hyot is a 2V x 2V matrix drawn from the Gaus-
sian orthogonal ensemble (GOE) — all-to-all in-
teraction within an ergodic dot (N = 3).

= 2™ term — coupling between a spin j outside
the dot (j=1,...,L) and a random spin n(j)
within the dot — « tunes the EBT, u; o j.
3 term is represented by the disorder £,

= has & = 1/+/2 — critical point derived within
the avalanche theory,

= allows for using close form expression for the
Thouless time I" o< exp (—ln (#) L) ,

» leading to [see Eq. (4)]
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Fig. 3 Scaling of fluctuations of matrix elements. (a),
(b) Eigenstate-to-eigenstate fluctuations of the diagonal
matrix elements, 8, = |(8%),11 — (5%),]. (c) Low-@ off-
diagonal matrix elements. Dashed lines in (a)-(c) are fits
of ap2~L/M. (d) Fluctuation exponents 1 from Eq. (6)
as a function of . The solid line is a fit of bgn™ to the
results for the off-diagonal matrix elements.
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Fig. 4 Quantum dynamics. (a) Difference AQ., be-
tween the microcanonical ensemble and the diagonal en-
semble prediction after a quantum quench Q(t)(“) =
(WolS% (t)|wo), vs L; Squares: o = 0.74 =~ @, at which
n in Fig. 3(d) diverges, 1 — oo. Black circles: a =
0.86 (also studied in Fig. 2). (b) Autocorrelation func-
tion C(¢) = (S5(£)83(0)), (brackets {---), denote both
quantum expectation value and the disorder average) at
o = (.86 and different L, as function of I7t.
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