We unravel how ETH breaks down when one approaches the boundaries of ergodicity and introduce a scenario in many-body quantum systems, dubbed the fading ergodicity regime, that links the breakdown to the non-ergodic behavior.



# Fading ergodicity

Maksymilian Kliczkowski<sup>1, 2, 3</sup>, Rafał Świętek<sup>1, 2</sup>, Miroslav Hopjan<sup>2</sup>, and Lev Vidmar<sup>1, 2</sup>

<sup>1</sup>Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia <sup>2</sup>Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia <sup>3</sup>Institute of Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland E-mail: maksymilian.kliczkowski@pwr.edu.pl, lev.vidmar@ijs.si

## Introduction and ETH ansatz

- The quantum chaos conjecture links the emergence of RMT statistics in quantum many-body systems to chaotic dynamics in their classical limit [1,2],
- RMT predictions also apply to the (spectral) statistics of sys-



#### Quantum Sun Model 4

We provide both analytical and numerical evidence in the Quantum Sun Model [12-15], that hosts **EBT** in the thermodynamic limit.

$$\hat{H} = \hat{H}_{\text{dot}} + \sum_{j=1}^{L} \alpha^{u_j} \hat{S}_{n(j)}^x \hat{S}_j^x + \sum_{j=1}^{L} h_j \hat{S}_j^z , \qquad (5)$$

•  $\hat{H}_{dot}$  is a  $2^N \times 2^N$  matrix drawn from the Gaussian orthogonal ensemble (GOE) – all-to-all interaction within an *ergodic* dot (N = 3).

- $2^{nd}$  term coupling between a spin *j* outside the dot (j = 1, ..., L) and a random spin n(j)within the dot –  $\alpha$  tunes the EBT,  $u_j \propto j$ . <u> $3^{rd}$  term</u> is represented by the disorder  $h_i$ ,
- has  $\tilde{\alpha}_c = 1/\sqrt{2}$  critical point derived within the avalanche theory,

tems without classical counterparts [3-5].

*Experiments* on nonequilibrium dynamics of isolated systems typically cannot access spectral properties but can measure local observables [6].

The central role is played by the eigenstate thermalization hypothesis (ETH) [7-9], which:

- simply explains the agreement between the observable expectation values and the predictions of statistical ensembles [10],
- originates from their analysis in *random pure states* [10] suggesting thermalization on a level of *eigenstates*.

Hamiltonian eigenstates  $\hat{H}|n\rangle = E_n|n\rangle$  are not random pure states and hence (for eigenstates)

- the ETH of an observable  $\hat{O}$  contains non-trivial refinements beyond the **RMT**
- represent the structure function  $O(\bar{E})$  of the diagonals (at mean energy  $\overline{E} = (E_n + E_m)/2$ ), and
- the envelope function  $f(\bar{E}, \omega)$ , where  $\omega = E_n E_m$  is the energy difference ( $\hbar \equiv 1$ ).

These, combined with the random fluctuations  $R_{nm}$ , give rise to the conventional ETH ansatz [11],

 $\langle n|\hat{O}|m\rangle = O(\bar{E})\delta_{m,n} + \rho(\bar{E})^{-1/2}f(\bar{E},\omega)R_{nm}$ (1)

**Fig. 2** Coarse-grained *off-diagonal* matrix elements of  $|(S_L^z)_{nm}|^2$  at  $\alpha = 0.86$  and different L. Main panel:  $|(S_L^z)_{nm}|^2 \rho$  vs  $\omega$ , where  $\rho \propto 2^L$ . Dashed lines are fits to the Lorentzian function [Eq. (3)], from which we extract  $\Gamma$ . The red arrows highlight the weight accumulation (depletion) at low (high)  $\omega$ . <u>Inset</u>: Data collapse –  $|(S_L^z)_{nm}|^2 \rho \Gamma$  vs  $\omega/\Gamma$ .

We establish the fading ergodicity regime, intermediate between the completely non-ergodic and conventional ETH limits and propose an observable-based precursor of the ergodicity breaking phase transition (EBT).

The approach to EBT in physical systems is better understood through *spectral properties*. Here, one can define:

- the *Thouless energy*  $\Gamma$  distinguishes short- from long-range spectral statistics.
- the mean level spacing  $\Delta$  (Heisenberg energy) short-range statistics follow RMT predictions, while long-range do not, with  $\Gamma$  shrinking to  $\Delta$  at EBT.

allows for using close form expression for the Thouless time  $\Gamma \propto \exp\left(-\ln\left(\frac{1}{\alpha^2}\right)L\right)$ , leading to [see Eq. (4)]  $\overline{|O_{nm}|^2} \propto e^{-\ln\left(\frac{\alpha^2}{\tilde{\alpha}_c^2}\right)L} \to \eta = 2\left(1 - \frac{\ln\alpha}{\ln\tilde{\alpha}_c}\right)^{-1}.$  (6)



Fig. 3 Scaling of fluctuations of matrix elements. (a), (b) Eigenstate-to-eigenstate fluctuations of the *diagonal* 

The many-body density of states  $\rho(\bar{E})$  exponentially suppresses fluctuations with lattice size L.

## Motivation and ETH breakdown

For counterexamples, the ETH ansatz likely fails: (a) fluctuations may decay polynomially with L, and (b) some eigenstates (*outliers*) may not match *microcanonical averages*. – weaker forms of ETH that may apply to: (i) integrable systems, (ii) single particle chaos, (iii) many-body scars, (iv) Hilbert space fragmentation.

- all incompatible with *ergodicity* and *thermalization* 

Here, we answer the fundamental questions:

- How and when does conventional ETH evolve into weaker forms as ergodicity fades?
- How it relates to breakdown of RMT-like short-range statistics?
- What happens to fluctuations near the ergodicity boundary?



• Thouless time  $t_{\text{Th}} \propto 1/\Gamma$  and Heisenberg time  $t_H \propto 1/\Delta$ . In the fading ergodicity regime, the system remains ergodic **beyond conventional ETH**, while fluctuations of the *diagonal* and low- $\omega$  off-diagonal matrix elements soften.

### matrix elements, $\delta_n \equiv |(\hat{S}_L^z)_{n+1} - (\hat{S}_L^z)_n|$ . (c) Low- $\omega$ offdiagonal matrix elements. Dashed lines in (a)-(c) are fits of $a_0 2^{-L/\eta}$ . (d) Fluctuation exponents $\eta$ from Eq. (6) as a function of lpha. The solid line is a fit of $b_0\eta^*$ to the results for the *off-diagonal* matrix elements.

#### $10^{\circ}$ (a)0.5 $10^{-1}$ 0 $10^{-2}$ 0.8 0.9 8 10 12 L $10^{-1}$ short times long times C(t)L=9 $10^{-2}$ L = 13(b) $10^{-3}$

• In the non-ergodic regime, matrix element weight is expected to accumulate in the diagonal elements, c.f., sum rule

Softening of ETH at small  $\omega$ 

3

$$\frac{1}{\mathscr{D}}\sum_{n,m=1}^{\mathscr{D}}|O_{nm}|^2 = 1 , \qquad (2)$$

- Deviations from Eq. (1) occur despite the system being *ergodic* and short-range level statistics following RMT predictions.
- The fluctuating part in Eq. (1) acquires  $\omega$ -dependence,  $\rho(\bar{E})^{-1/2} \rightarrow \Sigma(\bar{E}, \omega \rightarrow 0, L) \rightarrow \rho(\bar{E})^{-1/\eta},$

with  $2 < \eta < \infty$  in the fading ergodicity regime.

• We consider a Lorentzian functional form of low- $\omega$  ( $\Delta < \omega <$  $\Gamma$ ) matrix elements, with characteristic energy scale  $\Gamma$ , c.f., *Thouless energy*.

$$\overline{|O_{nm}|^2}\rho = \frac{\Gamma}{\Gamma^2 + \omega^2} = \frac{1}{1 + (\omega/\Gamma)^2} \cdot \frac{1}{\Gamma}.$$
 (3)

**Fig. 1** Fading ergodicity scenario. (a) Divergence of the *fluctuation exponent*  $\eta$  as a function of the control parameter  $\alpha$ , when approaching EBT at  $\alpha = \alpha_c$ . (b) While the *Thouless time*  $t_{Th}$  is proportional to the *Heisenberg* time  $t_H$  at the transition point  $(t_{Th} \sim t_H)$ , and it is much smaller than  $t_H$  in the conventional ETH regime (e.g.,  $t_{\rm Th} \sim L^2$ ), it scales as  $t_{\rm Th} \sim (t_H)^{\gamma}$ , with  $0 < \gamma < 1$ , when the boundary of ergodicity is approached.  $\eta = 2$  when conventional ETH applies.

 $|O_{nm}|^2 \rho = \frac{1}{\Gamma^2 + \omega^2} = \frac{1}{1 + (\omega/\Gamma)^2} \cdot \frac{1}{\Gamma}$ 



Whenever Thouless energy increases as  $\Gamma \propto \Delta^{\zeta}$ , with  $0 < \zeta < 1$ , the system is still *ergodic* but the ETH does not hold in the conventional way and  $\eta = 2/(1-\zeta) > 2$  and  $\eta$  diverges at EBT, at which  $\Gamma \propto \Delta$ .

**Fig. 4** Quantum dynamics. (a) Difference  $\Delta Q_{\infty}$ , between the *microcanonical ensemble* and the *diagonal en*semble prediction after a quantum quench  $Q(t)^{(\mu)} \equiv 0$  $\langle \psi_0 | \hat{S}_L^z(t) | \psi_0 \rangle$ , vs L; Squares:  $\alpha = 0.74 \approx \alpha_c$ , at which  $\eta$  in Fig. 3(d) diverges,  $\eta \to \infty$ . <u>Black circles</u>:  $\alpha =$ 0.86 (also studied in Fig. 2). (b) Autocorrelation function  $C(t) \equiv \langle \hat{S}_L^z(t) \hat{S}_L^z(0) \rangle_{\mu}$  (brackets  $\langle \cdots \rangle_{\mu}$  denote both quantum expectation value and the disorder average) at  $\alpha = 0.86$  and different L, as function of  $\Gamma t$ .

 $\Gamma t$ 





[1] O. Bohigas, M. J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [10] L. D'Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, Adv. Phys. 65, 239 (2016). [2] G. Casati, F. Valz-Gris, I. Guarnieri, Lettere al Nuovo Cimento 28, 279 (1980) [11] M. Srednicki, J. Phys. A. 32, 1163 (1999). [3] G. Montambaux, D. Poilblanc, J. Bellissard, C. Sire, Phys. Rev. Lett. 70, 497 (1993)[12] J. Šuntajs, L. Vidmar, Phys. Rev. Lett. 129, 060602 (2022). [4] L. F. Santos, J. Phys. A. **37**, 4723 (2004). [13] W. De Roeck, F. Huveneers, Phys. Rev. B 95, 155129 (2017). [14] D. J. Luitz, F. Huveneers, W. De Roeck, Phys. Rev. Lett. 119, 150602 (2017). [5] M. Rigol, L. F. Santos, Phys. Rev. A 82, 011604 (2010). [15] J. Šuntajs, M. Hopjan, W. De Roeck, L. Vidmar, Phys. Rev. Res. **6**, 023030 (2024) [6] I. Bloch, J. Dalibard, S. Nascimbène, Nature Physics 8, 267 (2012). [7] M. Deutsch, Phys. Rev. A 43, 2046 (1991).