We unravel how **ETH** breaks down when one approaches the boundaries of ergodicity and introduce a scenario in many-body quantum systems, dubbed the **fading ergodicity** regime, that links the breakdown to the non-ergodic behavior.

Fading ergodicity

Maksymilian Kliczkowski $^{1, 2, 3}$, Rafał Świętek $^{1, 2}$, Miroslav Hopjan², and Lev Vidmar $^{1, 2}$

 1 Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia 2 Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia ³ Institute of Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland E-mail: maksymilian.kliczkowski@pwr.edu.pl, lev.vidmar@ijs.si

- The quantum chaos conjecture links the emergence of RMT statistics in quantum many-body systems to chaotic dynamics in their classical limit [1,2],
- RMT predictions also apply to the (spectral) statistics of sys-

1 Introduction and ETH ansatz

tems without classical counterparts [3-5].

The many-body *density of states* $\rho(E)$ exponentially suppresses fluctuations with lattice size *L*.

Experiments on nonequilibrium dynamics of isolated systems typically cannot access spectral properties but can measure local observables [6].

The central role is played by the eigenstate thermalization hypothesis (ETH) [7-9], which:

- simply explains the agreement between the *observable* expectation values and the predictions of statistical ensembles [10],
- originates from their analysis in *random pure states* $[10]$ suggesting thermalization on a level of eigenstates.
- $\ket{\text{Hamiltonian}}$ eigenstates $\hat{H}|n\rangle=E_n|n\rangle$ are not random pure states and hence (for eigenstates)
- \blacksquare the ETH of an observable \hat{O} contains non-trivial refinements beyond the RMT
- **represent the structure function** $O(E)$ **of the diagonals (at** mean energy $\bar{E}=(E_n+E_m)/2$), and
- the envelope function $f(E, ω)$, where $ω = E_n E_m$ is the energy difference $(h \equiv 1)$.

- How and when does conventional ETH evolve into weaker forms as ergodicity fades?
- How it relates to breakdown of RMT-like short-range statistics?
- What happens to fluctuations near the ergodicity boundary?

These, combined with the random fluctuations *Rnm*, give rise to the conventional ETH ansatz [11],

 $\langle n|\hat{O}|m\rangle = O(\bar{E})\delta_{m,n} + \rho(\bar{E})^{-1/2}f(\bar{E},\omega)R_{nm}$. (1)

Fig. 2 Coarse-grained off-diagonal matrix elements of \overline{S} $\binom{z}{L}$ *nm* $|^2$ at $\alpha = 0.86$ and different *L*. Main panel: $\overline{|(S_L^z)|}$ $\frac{z}{L}$) $_{nm}$ $|^{2}$ ρ vs ω , where $\rho \propto 2^{L}$. Dashed lines are fits to the Lorentzian function [Eq. (3)], from which we extract Γ . The red arrows highlight the weight accumulation (depletion) at low (high) ω . <u>Inset</u>: Data collapse – $\overline{|(S^z_L)|}$ *L*)*nm*| ²ρΓ vs ω/Γ.

2 Motivation and ETH breakdown

We establish the fading ergodicity regime, intermediate between the completely non-ergodic and conventional ETH limits and propose an observable-based precursor of the ergodicity breaking phase transition (EBT).

The approach to EBT in physical systems is better understood through *spectral properties*. Here, one can define:

- the Thouless energy Γ distinguishes short- from long-range spectral statistics.
- the mean level spacing Δ (Heisenberg energy) short-range statistics follow RMT predictions, while long-range do not, with Γ shrinking to Δ at EBT.
	-

For counterexamples, the ETH ansatz likely fails: (a) fluctuations may decay polynomially with *L*, and (b) some eigenstates (outliers) may not match microcanonical averages. - weaker forms of ETH that may apply to: (i) integrable systems, (ii) single particle chaos, (iii) many-body scars, (iv) Hilbert space fragmentation.

• Thouless time $t_{\text{Th}} \propto 1/\Gamma$ and Heisenberg time $t_H \propto 1/\Delta$. In the fading ergodicity regime, **the system remains ergodic beyond conventional ETH**, while fluctuations of the *diagonal* and low-ω off-diagonal matrix elements **soften**.

matrix elements, $\delta_{\!n} \equiv |(\hat{S}_{I}^{z})|$ (L) _{*n*+1} − (\hat{S}_{L}^{z} $\binom{z}{L}$ _n|. **(c)** Low- ω offdiagonal matrix elements. Dashed lines in (a)-(c) are fits of $a_0 2^{-L/\eta}$. (d) Fluctuation exponents η from Eq. (6) as a function of α . The solid line is a fit of $b_0\eta^*$ to the results for the off-diagonal matrix elements.

– **all incompatible** with ergodicity and thermalization

Here, we answer the fundamental questions:

• We consider a Lorentzian functional form of low- ω ($\Delta < \omega <$ Γ) matrix elements, **with characteristic energy scale** Γ**, c.f., Thouless energy.**

 $|O_{nm}|^2 \rho =$ $\Gamma^2+\omega^2$ = $1+(\omega/\Gamma)^2$ · Γ

We provide both analytical and numerical evidence in the Quantum Sun Model [12-15], that hosts EBT in the thermodynamic limit.

Fig. 1 Fading ergodicity scenario. **(a)** Divergence of the fluctuation exponent η as a function of the control parameter α , when approaching EBT at $\alpha = \alpha_c$. (b) While the *Thouless time t*_{Th} is proportional to the *Heisenberg time t_H* at the transition point $(t_{\text{Th}} \sim t_H)$, and it is much smaller than t_H in the conventional ETH regime (e.g., $t_{\rm Th}$ \sim $L^2)$, it scales as $t_{\rm Th}$ \sim $(t_H)^{\gamma}$, with $0 < \gamma < 1$, when the boundary of ergodicity is approached. $\eta = 2$ when conventional ETH applies.

- 2nd term coupling between a spin *j* outside the dot $(j = 1, ..., L)$ and a random spin $n(j)$ within the dot – α tunes the EBT, $u_j \propto j$. $3^{\rm rd}$ term is represented by the disorder $h_j,$ √
- has $\tilde{\alpha}_c = 1/\sqrt{2}$ critical point derived within the avalanche theory,

0 10 (a) $0.5 \, \text{F}$ 10^{-1} \mathbb{Q} 10^{-2} 0.7 0.8 0.9 6 8 *L* 10 12 10^{-1} short times long times *C*(*t*) $L = 9$ 10^{-2} $L = 13$ (b) 10^{-3}

Fig. 4 Quantum dynamics. **(a)** Difference ∆*Q*∞, between the *microcanonical ensemble* and the *diagonal en*semble prediction after a quantum quench $Q(t)^{(\mu)}\equiv 1$ $\langle \psi_0 | \hat{S}_{L}^z$ $L^z_L(t)|\psi_0\rangle$, vs *L*; Squares: $\alpha=0.74\approx\alpha_c$, at which η in Fig. 3(d) diverges, $\eta \rightarrow \infty$. Black circles: $\alpha =$ 0.86 (also studied in Fig. 2). **(b)** Autocorrelation function $C(t)\equiv \langle \hat{S}^z_I\rangle$ $L^z(I)\hat{S}^z_I$ $\langle L^z(0)\rangle_{\bm{\mu}}$ (brackets $\langle\cdots\rangle_{\bm{\mu}}$ denote both quantum expectation value and the disorder average) at $\alpha = 0.86$ and different *L*, as function of Γt .

3 Softening of ETH at small ω

• In the non-ergodic regime, matrix element weight is expected to accumulate in the diagonal elements, c.f., sum rule

$$
\frac{1}{\mathscr{D}} \sum_{n,m=1}^{\mathscr{D}} |O_{nm}|^2 = 1 , \qquad (2)
$$

- Deviations from Eq. (1) occur despite the system being ergodic and short-range level statistics following RMT predictions.
- The fluctuating part in Eq. (1) acquires ω -dependence, $\rho(\bar{E})^{-1/2} \,\,\rightarrow \,\,\Sigma(\bar{E},\pmb{\omega} \to 0,L) \,\,\rightarrow \,\,\rho(\bar{E})^{-1/\eta},$
- with $2 < \eta < \infty$ in the fading ergodicity regime.

Γ

1

1

. (3)

Whenever $\it Thouless$ energy increases as $\Gamma \,{\propto}\, \Delta^{\zeta}$, with $0 < \zeta < 1$, the system is still ergodic but the ETH does not hold in the conventional way and $\eta = 2/(1-\zeta) > 2$ and η **diverges** at EBT, at which $\Gamma \propto \Delta$.

4 Quantum Sun Model

$$
\hat{H} = \hat{H}_{dot} + \sum_{j=1}^{L} \alpha^{u_j} \hat{S}_{n(j)}^{x} \hat{S}_{j}^{x} + \sum_{j=1}^{L} h_j \hat{S}_{j}^{z},
$$
 (5)

 \cdot \hat{H} $f_{\rm dot}$ is a $2^N \times 2^N$ matrix drawn from the Gaussian orthogonal ensemble (GOE) – all-to-all interaction within an *ergodic* dot $(N = 3)$.

• allows for using close form expression for the Thouless time $\Gamma \! \propto \! \exp$ $\left($ −ln $\sqrt{1}$ α^2 \setminus *L* \setminus , • leading to [see Eq. (4)] $|O_{nm}|^2 \propto e$ −ln $\int \underline{\alpha^2}$ $\overline{\tilde{\alpha}_\mathcal{C}^2}$ *c* \setminus *L* $\rightarrow \eta = 2$ $\sqrt{ }$ 1− $ln \alpha$ $\ln \tilde{\alpha}_c$ \bigwedge ⁻¹ . (6)

Fig. 3 Scaling of fluctuations of matrix elements. **(a), (b)** Eigenstate-to-eigenstate fluctuations of the diagonal

> 10 2

10 3

0 4 Γt 8

[10] L. D'Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, Adv. Phys. 65, 239 (2016). [1] O. Bohigas, M. J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [2] G. Casati, F. Valz-Gris, I. Guarnieri, Lettere al Nuovo Cimento 28, 279 (1980) [11] M. Srednicki, J. Phys. A. 32, 1163 (1999). [3] G. Montambaux, D. Poilblanc, J. Bellissard, C. Sire, Phys. Rev. Lett. **70**, 497 (1993)[12] J. Šuntajs, L. Vidmar, Phys. Rev. Lett. **129**, 060602 (2022). [13] W. De Roeck, F. Huveneers, Phys. Rev. B 95, 155129 (2017). [4] L. F. Santos, J. Phys. A. 37, 4723 (2004). [5] M. Rigol, L. F. Santos, Phys. Rev. A 82, 011604 (2010). [14] D. J. Luitz, F. Huveneers, W. De Roeck, Phys. Rev. Lett. 119, 150602 (2017). [15] J. Šuntajs, M. Hopjan, W. De Roeck, L. Vidmar, Phys. Rev. Res. 6, 023030 (2024) [6] I. Bloch, J. Dalibard, S. Nascimbène, Nature Physics 8, 267 (2012). [7] M. Deutsch, Phys. Rev. A 43, 2046 (1991).