
We unravel how ETH breaks down when one approaches the boundaries of
ergodicity and introduce a scenario in many-body quantum systems, dubbed the

fading ergodicity regime, that links the breakdown to the non-ergodic behavior.
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1 Introduction and ETH ansatz

• The quantum chaos conjecture links the emergence of RMT
statistics in quantum many-body systems to chaotic dynamics
in their classical limit [1,2],

• RMT predictions also apply to the (spectral) statistics of sys-
tems without classical counterparts [3-5].

Experiments on nonequilibrium dynamics of isolated systems
typically cannot access spectral properties but can measure local
observables [6].

The central role is played by the eigenstate thermalization hy-
pothesis (ETH) [7-9], which:
• simply explains the agreement between the observable expec-

tation values and the predictions of statistical ensembles [10],
• originates from their analysis in random pure states [10] –

suggesting thermalization on a level of eigenstates.
Hamiltonian eigenstates Ĥ|n⟩ = En|n⟩ are not random pure
states and hence (for eigenstates)
• the ETH of an observable Ô contains non-trivial refinements

beyond the RMT
• represent the structure function O(Ē) of the diagonals (at

mean energy Ē = (En+Em)/2), and
• the envelope function f (Ē,ω), where ω = En−Em is the en-

ergy difference (h̄ ≡ 1).
These, combined with the random fluctuations Rnm, give rise to
the conventional ETH ansatz [11],

⟨n|Ô|m⟩= O(Ē)δm,n+ρ(Ē)−1/2 f (Ē,ω)Rnm . (1)

The many-body density of states ρ(Ē) exponentially suppresses
fluctuations with lattice size L.

2 Motivation and ETH breakdown
For counterexamples, the ETH ansatz likely fails: (a) fluctua-
tions may decay polynomially with L, and (b) some eigenstates
(outliers) may not match microcanonical averages. – weaker
forms of ETH that may apply to: (i) integrable systems, (ii)
single particle chaos, (iii) many-body scars, (iv) Hilbert space
fragmentation.
– all incompatible with ergodicity and thermalization

Here, we answer the fundamental questions:
• How and when does conventional ETH evolve into weaker forms

as ergodicity fades?
• How it relates to breakdown of RMT-like short-range statistics?
• What happens to fluctuations near the ergodicity boundary?
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Fig. 1 Fading ergodicity scenario. (a) Divergence of the fluctuation expo-
nent η as a function of the control parameter α , when approaching EBT at
α = αc. (b) While the Thouless time tTh is proportional to the Heisenberg
time tH at the transition point (tTh ∼ tH), and it is much smaller than tH in
the conventional ETH regime (e.g., tTh ∼ L2), it scales as tTh ∼ (tH)γ , with
0 < γ < 1, when the boundary of ergodicity is approached. η = 2 when
conventional ETH applies.
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Fig. 2 Coarse-grained off-diagonal matrix elements of |(Sz
L)nm|2 at

α = 0.86 and different L. Main panel: |(Sz
L)nm|2ρ vs ω , where ρ ∝ 2L.

Dashed lines are fits to the Lorentzian function [Eq. (3)], from which we
extract Γ. The red arrows highlight the weight accumulation (depletion)
at low (high) ω . Inset: Data collapse – |(Sz

L)nm|2ρΓ vs ω/Γ.

We establish the fading ergodicity regime, intermediate be-
tween the completely non-ergodic and conventional ETH
limits and propose an observable-based precursor of the
ergodicity breaking phase transition (EBT).

The approach to EBT in physical systems is better understood
through spectral properties. Here, one can define:
• the Thouless energy Γ – distinguishes short- from long-range

spectral statistics.
• the mean level spacing ∆ (Heisenberg energy) – short-range

statistics follow RMT predictions, while long-range do not,
with Γ shrinking to ∆ at EBT.

• Thouless time tTh ∝ 1/Γ and Heisenberg time tH ∝ 1/∆.
In the fading ergodicity regime, the system remains ergodic
beyond conventional ETH, while fluctuations of the diagonal
and low-ω off-diagonal matrix elements soften.

3 Softening of ETH at small ω

• In the non-ergodic regime, matrix element weight is expected
to accumulate in the diagonal elements, c.f., sum rule

1
D

D

∑
n,m=1

|Onm|2 = 1 , (2)

• Deviations from Eq. (1) occur despite the system being ergodic
and short-range level statistics following RMT predictions.

• The fluctuating part in Eq. (1) acquires ω-dependence,
ρ(Ē)−1/2 → Σ(Ē,ω → 0,L) → ρ(Ē)−1/η,

with 2 < η < ∞ in the fading ergodicity regime.
• We consider a Lorentzian functional form of low-ω (∆ < ω <

Γ) matrix elements, with characteristic energy scale Γ,
c.f., Thouless energy.

|Onm|2ρ =
Γ

Γ2+ω2 =
1

1+(ω/Γ)2 ·
1
Γ
. (3)

and, as a main result of our study,
|Onm|2 ∝

1
ρΓ

≈ ∆

Γ
. (4)

Whenever Thouless energy increases as Γ ∝ ∆ζ , with 0 < ζ < 1,
the system is still ergodic but the ETH does not hold in the con-
ventional way and η = 2/(1−ζ )> 2 and

η diverges at EBT, at which Γ ∝ ∆.

4 Quantum Sun Model

We provide both analytical and numerical evi-
dence in the Quantum Sun Model [12-15], that
hosts EBT in the thermodynamic limit.

Ĥ = Ĥdot+
L

∑
j=1

α
u jŜx

n( j)Ŝ
x
j +

L

∑
j=1

h jŜz
j , (5)

• Ĥdot is a 2N ×2N matrix drawn from the Gaus-
sian orthogonal ensemble (GOE) – all-to-all in-
teraction within an ergodic dot (N = 3).

• 2nd term – coupling between a spin j outside
the dot ( j = 1, ...,L) and a random spin n( j)
within the dot – α tunes the EBT, u j ∝ j.
3rd term is represented by the disorder h j,

• has α̃c = 1/
√

2 – critical point derived within
the avalanche theory,

• allows for using close form expression for the
Thouless time Γ ∝ exp

(
− ln

(
1

α2

)
L
)

,
• leading to [see Eq. (4)]

|Onm|2 ∝ e
− ln

(
α2

α̃2c

)
L
→η = 2

(
1− lnα

ln α̃c

)−1

. (6)
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Fig. 3 Scaling of fluctuations of matrix elements. (a),
(b) Eigenstate-to-eigenstate fluctuations of the diagonal
matrix elements, δn ≡ |(Ŝz

L)n+1− (Ŝz
L)n|. (c) Low-ω off-

diagonal matrix elements. Dashed lines in (a)-(c) are fits
of a02−L/η . (d) Fluctuation exponents η from Eq. (6)
as a function of α . The solid line is a fit of b0η∗ to the
results for the off-diagonal matrix elements.
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Fig. 4 Quantum dynamics. (a) Difference ∆Q∞, be-
tween the microcanonical ensemble and the diagonal en-
semble prediction after a quantum quench Q(t)(µ) ≡
⟨ψ0|Ŝz

L(t)|ψ0⟩, vs L; Squares: α = 0.74 ≈ αc, at which
η in Fig. 3(d) diverges, η → ∞. Black circles: α =
0.86 (also studied in Fig. 2). (b) Autocorrelation func-
tion C(t) ≡ ⟨Ŝz

L(t)Ŝ
z
L(0)⟩µ (brackets ⟨· · · ⟩µ denote both

quantum expectation value and the disorder average) at
α = 0.86 and different L, as function of Γt.


