Classical from quantum maps

Classical P-divisibility (stochastic matrices on
probability vectors)

p,=T(t)p,  T(t)=LH)T(t)
T(t)=T(t, s)T(s), t>s>0,
Tij(tv S) > 0 ZTij(t? S) =1,

if andonly if Lij(t) >0 1 # 35, > Li;(t) =

Quantum P-divisibility (CPTP maps)
At — At,s AS 9 At,s PIP

Fix a maximally Abelian subalgebra
P =A{P}i . PPj=06;P > P =1

One can define a classical stochastic process out
of the quantum one in two-ways:

1. Classical reduction of the generator
Ny = LNy~ Lij(t) = Te(P; Ly P)))
Theorem (Kossakowski) A, is P-divisible iff
Li(t) >0 i#7, > Li(t)=0, VP.

2. Classical reduction of the dynamical map
T,(t) = TH(PA[P)) ~ T(t) = LIOT(t) (1

Question: If the quantum process A; iIs P-

divisible, will the classical process defined by (1)
be P-divisible?

Qubit unital dynamics

A qubit dynamics is purely dissipative L, = Dy if
and only if the generator is self-dual £, = £F.
Proposition. Let A, = Af, be a self-dual, purely
dissipative, invertible qubit dynamics. Then, the
associated classical stochastic process T'(t) is
P-divisible if and only if Ay is P-divisible.

Remark. A\; = i 5L Time ordering drops out!

Question: Can a purely dissipative P-divisible
dynamics have a non P-divisible classical
reduction? We must consider a non-self dual
dynamics (non-trivial time ordering)

A class of orthogonally covariant
qubit dynamics

—i|Hy, p] + Dylpl,
Dol = > Kyt)(opo; — o0 0))

= Quantum generator Lilp] =

Z] 1
" AM1] =1, <= K(t)= K'(t) € M3(R) .
= Classically reduce on P € M,(C)
Too(t) 1 — Toolt)
T(t P, =
(#) = (1 —Tw(t) Tw@) |

= Classical generator:

= Matrix representation A(t) =
Py=s1+n- o)~ 2Ty(t) — 1= (n|At)|n)

v Quantum P-div.

—(L(t)+ LT(t) >0,
v/ Classical P-div. 0

_ 1{n|LHA[H)|n)
Ji =5 mAOIn) =

Unitary vs. dissipative

1. Unitary qubit dynamics H =1/2w - o,
Fo [T — off —q 4 let) f o 1coslet) oy
where w = ||w||,. Let @ - n = cos(H).

W sin(wt) sin*(6)
Je= 2 cos2(6) + cos(wt) sin*(0) 2
forall 8 € (0,7) = T(t) is not P-divisible
2. P-divisible Pauli dynamlcs

‘CZ] (t) [/0] — ( )(523 : A( ) — efotdsz<3)
Ji=—= n|\/7 F|n
2 (| At )\n>
T(t)is P-divisible <= A, is P-divisible.

= Fi; = [i)(j] on the eigenbasis of o, and
O = ZO@EZ@, 0; — +1

Then ®[0pO?]

= O®[p]O! has the form

1
LA pl = > AijEijpE;; + AEywpE,
)
+ AEupEy + p Eypp' By + T Ejp' By,

= CPTP dynamics in this class A; = GLAEAnm)

_ A4 1 — bt
A(t) — (1 _a, bt ) , at, bt - [O, 1]

Nl < Vaby, el < V(1 —a)(1—1by) .
= Ly = NATE= OBELm) with

B(t) _ A(t)A(t)—l _ (_V(t) 7+(t) )

v-(t) —7+(t)
= Transversal and longitudinal rates:
['p(t) := — Re(y), [r(t) =~ (t) +v_(1).
= \¢ is P-divisible if and only if v+(t) > 0 and

Cr(t) ~ 52 4 el 0 2 md - @)

Non-self-dual dynamics from self-dual generator

PA" )

Self-duality: ®AAH =
Let Ay = [Nl and gy = |puele™™,

Dissipativity (£, = Lt) iff v.(t) = ~v_(¢) and
by =—T1(t) <= @lM|” = Ol
Define gy = ‘)\t‘ - ‘,Ut|, ht = ‘)\t‘ o |,u,5|,

with 0 < hy < g4, g9 = hg = 1. Then, P-divisibility
condition (2) is recast as

‘(915‘2 (gt ht) gtht |
g: + hy gtht

Example

Pick hy = e and g, = e~

" Non self-dual map given by
IN\e| = e * cosh(t),
1] = e ' sinh(¢)
a; = b; = e~" cosh(t),
P-divisible iff 0 < C < 3/2.
" Self-dual generator given by
b= —Tr(t)= -2,  my=/1+ 2@t
Y+(8) =7-()) =1,
" Classical reduction on Py, n = (cos(£),sin(€), 0)
2T00(t) — 1 = | M| cos(py) + || cos(0; + 2€) .
For & = n/4 and C' = 3/2, loss of classical P-divisibility
for a purely dissipative evolution (see Figure 1.)
2To(t) —1>0, Tp£0 = f, £0

— (C'tanh’(t)
0; = 3C tanh(t),
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Figure 1. Tyo(t) form = ( and C' = 3/2

vl

Coherence-assisted backflow of
information

= Breuer-Laine-Piilo (BLP) approach:

v/ Internal and External information:
i (ps o p) = [|Aelpp — (1 — o]l
El(p, o) =To(p, o5 1) — Tl (p, o5 ),
¢/ no backflow of information (BFI):
O = —0,& <0,
v Invertible A;; P-divisibility <= no BF
v Information storage psp(t) = U; ps ® pg U}
I — T < 21 D(pse(s), ps(s) ® pe(s))
+2(1 — p)D(ose(s), os(s) @ og(s)) (3)
+2min{u, 1 — p}D(pp(s), op(s))
=Y, ;P € P (encoding of probability
vector). Define the classical internal

we 0,1

Information
Itd(ra SSN) L= DAt[Aﬂ(pragsmh
= [|T(t)(ur — (1 — p)s)|l,
where D[p| = X; P,pP; (full decoherence), and

the coherent internal information
Ci(r, 8;11) == T (pr, psi ) — Ij' (7, 83 1) > 0.
= Quantum P-divisibility yields
Ti (v, 8, ) +Ci(r, 8, 1) < I (7, 5 ) +Co(r, 85 41)
= Upper-bound the difference of Z¢
I (r, s; ) — I (7, 83 1) < Colm, 85 1)
< pCu(Aslpr]) + (1 = p) Cp(Aslps]) (4)
(Co,(p) == iz |pij| £1-norm of coherence).

= Quantum coherences: information storages
acting like the environment in open systems.

Conclusions

= Purely dissipative, self-dual dynamics always
nave P-divisible classical reductions while
ourely dissipative, non self-dual dynamics
may give rise to non P-divisible classical
reductions, similarly to unitary case.

= Classical BFI interpretation: Quantum
coherences play an information storing role
as the environment does in the quantum
scenario (compare (3) and (4)).

= Future directions : dynamics after
partial-decoherence and reduction to
non-maximally Abelian algebra
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