Quantum vs. classical P-divisibility

Fabio Benatti^{1,2}, Dariusz Chruściński³, Giovanni Nichele^{1,2}

¹Department of Physics, University of Trieste ²INFN, Trieste Section ³Institute of Physics, Nicolaus Copernicus University, Toruń

Classical from quantum maps

Classical P-divisibility (stochastic matrices on probability vectors)

$$egin{aligned} oldsymbol{p}_t &= T(t)oldsymbol{p} \ , & \dot{T}(t) &= L(t)T(t) \ T(t) &= T(t,s)\,T(s) \ , & t \geq s \geq 0 \ , \ T_{ij}(t,s) \geq 0 & \sum_i T_{ij}(t,s) = 1, \ \end{aligned}$$
 if and only if $L_{ij}(t) \geq 0 \ i \neq j, \quad \sum L_{ij}(t) = 0$

Quantum P-divisibility (CPTP maps)

$$\Lambda_t = \Lambda_{t,s} \Lambda_s , \qquad \Lambda_{t,s} PTP$$

Fix a maximally Abelian subalgebra

$$\mathcal{P} = \{P_i\}_{i=1}^d, \ P_i P_j = \delta_{ij} P_j \quad \sum_i P_i = 1.$$

One can define a classical stochastic process out of the quantum one in two-ways:

1. Classical reduction of the generator

$$\dot{\Lambda}_t = \mathcal{L}_t \Lambda_t \iff L_{ij}(t) = \operatorname{Tr}(P_i \mathcal{L}_t[P_i])$$

Theorem (Kossakowski) Λ_t is P-divisible iff

$$L_{ij}(t) \geq 0$$
 $i \neq j$, $\sum_{i} L_{ij}(t) = 0$, $\forall \mathcal{P}$.

2. Classical reduction of the dynamical map

$$T_{ij}(t) = \text{Tr}(P_i \Lambda_t[P_j]) \rightsquigarrow \dot{T}(t) = L(t)T(t)$$
 (1)

Question: If the quantum process Λ_t is P-divisible, will the classical process defined by (1) be P-divisible?

Qubit unital dynamics

• Quantum generator $\mathcal{L}_t[\rho] = -i[H_t, \rho] + \mathcal{D}_t[\rho],$

$$\mathcal{D}_t[\rho] = \frac{1}{2} \sum_{i=1}^{3} K_{ij}(t) \left(\sigma_i \rho \sigma_j - \frac{1}{2} \{ \sigma_j \sigma_i, \rho \} \right)$$

- Classically reduce on $\mathcal{P}\subset M_2(\mathbb{C})$

$$T(t) = \begin{pmatrix} T_{00}(t) & 1 - T_{00}(t) \\ 1 - T_{00}(t) & T_{00}(t) \end{pmatrix}, \ P_1 = 1 - P_0$$

Classical generator:

$$L(t) = \dot{T}(t)T(t)^{-1} = \frac{\dot{T}_{00}(t)}{2T_{00}(t) - 1} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix},$$

$$T(t)$$
 P-divisible $\iff f_t := \frac{T_{00}(t)}{2T_{00}(t)-1} \le 0$

• Matrix representation $\widetilde{\Lambda}_{ij}(t) = \text{Tr}(\sigma_i \Lambda_t[\sigma_j]),$ $P_0 \equiv \frac{1}{2}(\mathbb{1} + \boldsymbol{n} \cdot \boldsymbol{\sigma}) \rightsquigarrow 2T_{00}(t) - 1 = \langle \boldsymbol{n} | \widetilde{\Lambda}(t) | \boldsymbol{n} \rangle$

✓ Quantum P-div. $-(\tilde{\mathcal{L}}(t) + \tilde{\mathcal{L}}^T(t)) \ge 0$,

✓ Classical P-div. $f_t = \frac{1}{2} \frac{\langle \boldsymbol{n} | \widetilde{\mathcal{L}}(t) \widetilde{\Lambda}(t) | \boldsymbol{n} \rangle}{\langle \boldsymbol{n} | \widetilde{\Lambda}(t) | \boldsymbol{n} \rangle} \leq 0$

Unitary vs. dissipative

1. Unitary qubit dynamics $H = 1/2\boldsymbol{\omega} \cdot \boldsymbol{\sigma}$, $\widetilde{\mathcal{L}} = -\widetilde{\mathcal{L}}^T \Longrightarrow e^{t\widetilde{\mathcal{L}}} = \mathbb{1} + \frac{\sin(\omega t)}{\omega}\widetilde{\mathcal{L}} + \frac{1-\cos(\omega t)}{\omega^2}\widetilde{\mathcal{L}}^2$. where $\omega = \|\boldsymbol{\omega}\|_1$. Let $\hat{\boldsymbol{\omega}} \cdot \boldsymbol{n} = \cos(\theta)$.

$$f_t = -\frac{\omega}{2} \frac{\sin(\omega t) \sin^2(\theta)}{\cos^2(\theta) + \cos(\omega t) \sin^2(\theta)} \not\leq 0$$

for all $\theta \in (0, \pi) \implies T(t)$ is not P-divisible

2. P-divisible Pauli dynamics

$$\widetilde{\mathcal{L}}_{ij}(t)[\rho] = -\Gamma_i(t)\,\delta_{ij}\,,\,\widetilde{\Lambda}(t) = e^{\int_0^t \mathrm{d}s\widetilde{\mathcal{L}}(s)}$$

$$f_t = -\frac{1}{2} \frac{\langle \boldsymbol{n}|\sqrt{\widetilde{\Lambda}(t)}(-\widetilde{\mathcal{L}}(t))\sqrt{\widetilde{\Lambda}(t)}|\boldsymbol{n}\rangle}{\langle \boldsymbol{n}|\widetilde{\Lambda}(t)|\boldsymbol{n}\rangle} \leq 0.$$

T(t) is P-divisible $\iff \Lambda_t$ is P-divisible.

A qubit dynamics is purely dissipative $\mathcal{L}_t = \mathcal{D}_t$ if and only if the generator is self-dual $\mathcal{L}_t = \mathcal{L}_t^{\ddagger}$. **Proposition**. Let $\Lambda_t = \Lambda_t^{\ddagger}$, be a self-dual, purely dissipative, invertible qubit dynamics. Then, the associated classical stochastic process T(t) is P-divisible if and only if Λ_t is P-divisible. **Remark.** $\Lambda_t = e^{\int_0^t \mathrm{d}s \mathcal{L}_s}$ Time ordering drops out!

Question: Can a purely dissipative P-divisible dynamics have a non P-divisible classical reduction? We must consider a non-self dual dynamics (non-trivial time ordering)

A class of orthogonally covariant qubit dynamics

• $E_{ij} = |i\rangle\langle j|$ on the eigenbasis of σ_z and

$$O = \sum_{i} o_i E_{ii}, \ o_i = \pm 1$$

Then $\Phi[O\rho O^T] = O\Phi[\rho]O^T$ has the form

$$\Phi^{(A,\lambda,\mu)}[\rho] := \sum_{i,j=0}^{1} A_{ij} E_{ij} \rho E_{ji} + \lambda E_{00} \rho E_{11}$$

$$+ \overline{\lambda} E_{11} \rho E_{00} + \mu E_{00} \rho^T E_{11} + \overline{\mu} E_{11} \rho^T E_{00},$$

• CPTP dynamics in this class $\Lambda_t = \Phi^{(A(t), \lambda_t, \mu_t)}$

$$A(t) = \begin{pmatrix} a_t & 1 - b_t \\ 1 - a_t & b_t \end{pmatrix} , \quad a_t, b_t \in [0, 1]$$

$$|\lambda_t| \le \sqrt{a_t b_t}$$
, $|\mu_t| \le \sqrt{(1 - a_t)(1 - b_t)}$.

• $\mathcal{L}_t = \dot{\Lambda}_t \Lambda_t^{-1} = \Phi^{(B(t),\ell_t,m_t)}$, with

$$B(t) = \dot{A}(t)A(t)^{-1} = \begin{pmatrix} -\gamma_{-}(t) & \gamma_{+}(t) \\ \gamma_{-}(t) & -\gamma_{+}(t) \end{pmatrix}$$

Transversal and longitudinal rates:

$$\Gamma_T(t) := -\operatorname{Re}(\ell_t), \qquad \Gamma_L(t) := \gamma_+(t) + \gamma_-(t).$$

• Λ_t is P-divisible if and only if $\gamma_{\pm}(t) \geq 0$ and

$$\Gamma_T(t) - \frac{\Gamma_L(t)}{2} + \sqrt{\gamma_+(t)\gamma_-(t)} \ge |m_t| \quad (2)$$

Non-self-dual dynamics from self-dual generator

Self-duality: $\Phi^{(A,\lambda,\mu)} = \Phi^{(A^T,\overline{\lambda},\mu)}$.

Let
$$\lambda_t = |\lambda_t| e^{i\varphi_t}$$
 and $\mu_t = |\mu_t| e^{i\theta_t}$,

Dissipativity (
$$\mathcal{L}_t = \mathcal{L}_t^{\ddagger}$$
) iff $\gamma_+(t) = \gamma_-(t)$ and $\ell_t = -\Gamma_T(t) \iff \dot{\varphi}_t |\lambda_t|^2 = \dot{\theta}_t |\mu_t|^2$.

Define $g_t := |\lambda_t| + |\mu_t|$, $h_t := |\lambda_t| - |\mu_t|$, with $0 < h_t \le g_t$, $g_0 = h_0 = 1$. Then, P-divisibility condition (2) is recast as

$$|\dot{\theta}_t|^2 \left(\frac{g_t - h_t}{g_t + h_t}\right)^2 \leq \frac{\dot{g}_t \dot{h}_t}{g_t \dot{h}_t}.$$

Example

Pick $h_t = e^{-3t}$ and $g_t = e^{-t}$

Non self-dual map given by

$$|\lambda_t| = e^{-2t} \cosh(t), \qquad \varphi_t = C \tanh^3(t),$$

$$|\mu_t| = e^{-2t} \sinh(t), \qquad \theta_t = 3C \tanh(t),$$

$$a_t = b_t = e^{-t} \cosh(t),$$

P-divisible iff $0 \le C \le 3/2$.

Self-dual generator given by

$$\ell_t = -\Gamma_T(t) = -2, \qquad m_t = \sqrt{1 + r_t^2} e^{i(\theta_t + \varphi_t)},$$

 $\gamma_+(t) = \gamma_-(t) = 1,$

• Classical reduction on $P_{\pm n}$, $\boldsymbol{n} = (\cos(\xi), \sin(\xi), 0)$ $2T_{00}(t) - 1 = |\lambda_t| \cos(\varphi_t) + |\mu_t| \cos(\theta_t + 2\xi).$

For $\xi = \pi/4$ and C = 3/2, loss of classical P-divisibility for a purely dissipative evolution (see Figure 1.)

$$2T_{00}(t) - 1 \ge 0, \quad \dot{T}_{00} \not\le 0 \implies f_t \not\le 0$$

Figure 1. $T_{00}(t)$ for $\mathbf{n} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ and C = 3/2

Coherence-assisted backflow of information

- Breuer-Laine-Piilo (BLP) approach:
- ✓ Internal and External information:

$$\mathcal{I}_{t}^{q}(\rho, \sigma; \mu) = \|\Lambda_{t}[\mu\rho - (1 - \mu)\sigma]\|_{1}, \quad \mu \in [0, 1]$$

$$\mathcal{E}_{t}^{q}(\rho, \sigma; \mu) = \mathcal{I}_{0}^{q}(\rho, \sigma; \mu) - \mathcal{I}_{t}^{q}(\rho, \sigma; \mu),$$

✓ no backflow of information (BFI):

$$\partial_t \mathcal{I}_t^q = -\partial_t \mathcal{E}_t^q \le 0$$

- \checkmark Invertible Λ_t : P-divisibility \iff no BFI
- lacksquare Information storage $ho_{SE}(t) = U_t \,
 ho_S \otimes
 ho_E \, U_t^\dagger$

$$\mathcal{I}_t^q - \mathcal{I}_s^q \le 2\mu D(\rho_{SE}(s), \rho_S(s) \otimes \rho_E(s))$$

$$+ 2(1 - \mu)D(\sigma_{SE}(s), \sigma_S(s) \otimes \sigma_E(s))$$

$$+ 2\min\{\mu, 1 - \mu\}D(\rho_E(s), \sigma_E(s))$$

$$(3)$$

• $\rho_r = \sum_i r_i P_i \in \mathcal{P}$ (encoding of probability vector). Define the classical internal information

$$egin{aligned} \mathcal{I}_t^{cl}(oldsymbol{r},oldsymbol{s};\mu) := & \left\| \mathbb{D} \Lambda_t [\Delta_{\mu}(
ho_{oldsymbol{r}},\sigma_{oldsymbol{s}})]
ight\|_1 \ &= & \left\| T(t) (\mu oldsymbol{r} - (1-\mu) oldsymbol{s})
ight\|_{\ell_1} \end{aligned}$$

where $\mathbb{D}[\rho] = \sum_{i} P_{i} \rho P_{i}$ (full decoherence), and the coherent internal information

$$C_t(\boldsymbol{r}, \boldsymbol{s}; \mu) := \mathcal{I}_t^q(\rho_{\boldsymbol{r}}, \rho_{\boldsymbol{s}}; \mu) - \mathcal{I}_t^{cl}(\boldsymbol{r}, \boldsymbol{s}; \mu) \ge 0.$$

• Quantum P-divisibility yields

$$\mathcal{I}_t^{cl}(\boldsymbol{r}, \boldsymbol{s}; \mu) + \mathcal{C}_t(\boldsymbol{r}, \boldsymbol{s}; \mu) \leq \mathcal{I}_s^{cl}(\boldsymbol{r}, \boldsymbol{s}; \mu) + \mathcal{C}_s(\boldsymbol{r}, \boldsymbol{s}; \mu)$$
.

• Upper-bound the difference of \mathcal{I}^{cl}_{t}

$$\mathcal{I}_{t}^{cl}(\boldsymbol{r},\boldsymbol{s};\mu) - \mathcal{I}_{s}^{cl}(\boldsymbol{r},\boldsymbol{s};\mu) \leq \mathcal{C}_{s}(\boldsymbol{r},\boldsymbol{s};\mu)$$

$$\leq \mu C_{\ell_{1}}(\Lambda_{s}[\rho_{\boldsymbol{r}}]) + (1-\mu) C_{\ell_{1}}(\Lambda_{s}[\rho_{\boldsymbol{s}}]) \quad (4)$$

 $(C_{\ell_1}(\rho):=\sum_{i\neq j}|\rho_{ij}|\;\ell_1$ -norm of coherence).

 Quantum coherences: information storages acting like the environment in open systems.

Conclusions

- Purely dissipative, self-dual dynamics always have P-divisible classical reductions while purely dissipative, non self-dual dynamics may give rise to non P-divisible classical reductions, similarly to unitary case.
- Classical BFI interpretation: Quantum coherences play an information storing role as the environment does in the quantum scenario (compare (3) and (4)).
- Future directions: dynamics after partial-decoherence and reduction to non-maximally Abelian algebra

References

- [1] F. Benatti, D. Chruściński, and G. Nichele. Quantum vs. classical P-divisibility. arXiv:2405.05794, 2024.
- [2] D. Chruściński and B. Bhattacharya. A Class of Schwarz qubit maps with diagonal unitary and orthogonal symmetries. arXiv:2404.10895, 2024.
- [3] K. Korzekwa and M. Lostaglio. Quantum advantage in simulating stochastic processes. *Physical Review X*, 11(2):021019, 2021.