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Introduction
• The overwhelming majority of physical systems ther-

malize, i.e., the long time dynamics match thermal en-
sembles

• Quantum systems have RMT statistics, when their clas-
sical counterpart is chaotic [1].

• Similarly for many-body interacting models → RMT
predicts the emergence of ergodicity

• On the level of observables, Eigenstate Thermalization
Hypothesis (ETH) is a sufficient condition for thermal-
ization [2]

⟨n|Ô|m⟩ = O(Ē)δm,n + ρ(Ē)−1/2f (Ē, ω)Rnm (1)

Violation of ETH can be manifested in different ways. A
paradigmatic example is the absence of transport in the An-
derson model. A milestone in the study of Anderson local-
ization in d-dimensions is the analysis of the RG flow for
the dimensionless conductance g by the gang of four [3]:

g(L) =

{
σLd−2 metallic regime

∼ exp{−L/ξ} insulating regime (2)

Recent studies focused then on modern observables, such
as the fractal dimension D for both higher-dimensional An-
derson model and RRG [4, 5]. Is this phenomenology ap-
plicable to local interacting systems?

• How is ETH broken when approaching the critical
point?

• Is it abrupt or is it a smooth process? Is there an inter-
mediate phase? → see Ref. [6] for details

• Is the single-parameter scaling (SPS) hypothesis at all
valid for interacting systems?

Figure 1: Sketch of scenarios of ergodicity breaking

Phenomonelogical Theory
For our study we consider the single-site entanglement en-
tropy, i.e., we treat all other spins as bath

ρ̂n = Trbath |n⟩⟨n| → Sn
A = −Tr (ρ̂n ln ρ̂n) → s =

SA

ln 2
. (3)

For U(1) conserving models one can show that the single-
site entanglement entropy directly relates to the fluctuations
of diagonal matrix elements of the local magnetization Ŝz

ℓ .
For particle-number breaking models this expression is sim-
ilarly true.

The main quantity of interest is the beta function

If single-parameter scaling is true, then around the critical
point sc we can define the function h(s)

β(s) =
1

νs
h(s− sc), (5)

where for h(x) = x we have ν = (scβ
′(sc))

−1. This function
determines the collapse as

s(L) = sc + f
(
(L/ξ)1/ν

)
(6)

for some f (z) and localization length ξ ≃ |α0 − αc|−ν(1 +

c1(α0 − αc) + ...).
We model the entanglement entropy in the entire ergodic

regime as

s = 1− ce−L/η = 1− c0e
−(L−L0)/η (7)

in the asymptotic limit L ≫ L0. The limiting case η → ∞
corresponds to the transition point. This ansatz is consis-
tent with fading ergodicity scenario developed in Ref. [6].

At the critical point s = sc = 1− c0. Next, from Eq. (7) we
find

βerg(s; c) = −1− s

s
ln
1− s

c
, (8)

where c (equivalently L0) might have parameter depen-
dence. On the other hand if we consider

β̃s =
d ln s

d ln L̃
= βerg(s; c0) (9)

or equivalently

β̃s = βs ·
(
1− L0

L

)
(10)

we find for L ≫ L0 the single-parameter ansatz with lin-
ear corrections

βs(s, L) = βerg(s; c0) +
βerg(s; c0)L0

L

L→∞−−−→ βerg(s; c0), (11)

provided L0 < ∞, i.e., we can summarize in the follow-
ing{

L0 → ∞ two-parameter scaling
L0 ∼ const < ∞ one-parameter scaling (12)

Coincidentally, this expressions allows for estimating the
critical exponent (after linearizing the beta function at the
critical point)

ν =
1

scβ′
s(sc)

= 1 (13)

On the non-ergodic side the wavefunctions become lo-
calized with exponential tails. Hence, the entanglement
can be als approximated as exponentially small, i.e., s ∼
exp{−L/ξ}. This yields the beta function on the localized
side

βloc(s) ∼ ln
s

sc
(14)

with critical exponent ν = 1 at s = sc.

Quantum Sun Model

We study the toy model for avalanches, the Quantum Sun
model [7]

Ĥ = R̂ + g0

L−1∑
ℓ=0

αuℓŜx
nℓ
Ŝx
ℓ +

L−1∑
ℓ=0

hℓŜ
z
ℓ . (15)

In this model there exist a transition for α = αc ≈ 1/
√
2

between an ergodic and localized phase.
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Figure 2: Finite-size scaling of 1− s in ergodic phase for (a) g0 = 0.5, (b)
g0 = 1 and (c) g0 = 2 with a F (x) = c exp{−L/η} fit to the data displayed
by the dashed lines. The solid line resembles the RMT-like scaling with
ηRMT = 1/ ln 2. The dash-dotted line is the critical value of c0 = 1− sc.
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Figure 3: Numerical data for β(s) for (a) g0 = 0.5, (b) g0 = 1 and (b)
g0 = 2.0 in the ergodic regime. The arrows indicate the increase in system
size L and the colors denote the value of interaction α. The dashed lines
show Eq. (8) with values of c extracted in Fig. 2, while the solid black line
shows Eq. 8 for c = c0.

The finite-size corrections shown in Fig. 3 cause the enve-
lope of the beta function to detach strongly from the SPS.
We model this behaviour by an additional correction term,
which vanish in the ETH and localized limit, i.e., we de-
fine

βenv(s) = ln s− (1− s) ln
1− s

a1
− a2s ln s (16)

with some fitting constants a1 and a2.
Below in Fig. 4 we test this ansatz to the enevelope of the
beta function. Remarkably, the functional dependence in
Eq. (16) fits the data in the entire range of α considered.
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Figure 4: Numerical data for β(s)
for (a) g0 = 1, (b) g0 = 0.5 and
(c) g0 = 2. The arrows indicate
the increase in system size L and
the colors denote the value of inter-
action α. The dashed curve shows
a fit of Eq. (16) to the envelope of
the data with resulting fitting val-
ues A = 3.61, 4.08, 2.69 and c =
0.29, 0.08, 0.04 for g0 = 0.5, 1, 2 re-
spectively.
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The decoupling of the envelope function from the SPS
cause the critical exponent to deviate from the predicted
ν = 1. Fig. 5 shows the data collapse for all values of g0
considered here.
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Figure 5: (a) Raw data scaled entanglement entropy s for different system
sizes an values of g0 in the vicinity of the estimated transition. (b) Finite-size
data collapse using a cost function minimization for the values of α shown
in panel (a). The dashed line denotes a fit of s = 1/

(
1 + c exp

{
−(L/ξ)1/ν

})
to the collapsed data. We normalize the values on the x-xaxis by ∆z =
max (L/ξ)−min (L/ξ) to show different g0 on the same scale.

Lastly let us comment on the critical exponent. We have a
set of equations using the beta function in Eq. (16){

β(sc) = 0

scβ
′(sc) = ν−1 → ν−1 = 1 + (1− A)sc

1− sc + ln sc
1− sc

.

(17)
Next, we test our prediction to the critical exponent ex-
tracted from Fig. 5:
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Figure 6: Numerical curves of
Eq. (13) for different values of A.
Black dots are numerical data for
g0 = 0.1, 0.2, 0.3, 0.5, 1, 2, 3.

Conclusions
• At sufficiently large system sizes L ≫ L0 there ex-

ists one-parameter scaling for many-body interact-
ing models

• Many-body ergodicity-breaking transitions are char-
acterized by the critical exponent ν = 1

• There exist finite size corrections, which are irrele-
valnt if L0 < ∞

• For finite systems the corrections to the SPS change
the critical exponent by decoupling the envelope from
the SPS
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