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INTRODUCTION
Quantum reservoir computing (QRC) is a low-complexity learning paradigm 
that combines the inherent dynamics of input-driven many-body quantum 
systems with classical learning techniques for nonlinear temporal data 
processing. We introduce a strongly interacting spin model on random 
regular graphs as the quantum component and investigate the interplay 
between static disorder, interactions, and graph connectivity, revealing their 
critical impact on quantum memory capacity and learnability accuracy. We 
tackle quantum and classical tasks, and identify optimal learning and 
memory regimes through studying information localization, dynamical 
quantum correlations, and the many-body structure of the disordered 
Hamiltonian.

Given two independent sequence of binary inputs, the task is to 
simultaneously learn their classical logical manipulations AND, OR, XOR. 
For classification, we use support vector machines with a nonlinear kernel. 
Input in this case is given as the product of pure states, e.g. .| ↑ ⟩ ⊗ | ↓ ⟩

• Logical multitasking

which is a mixture of a singlet Bell state  and a maximally mixed state . 
Utilizing a simple linear regression, the target  is to reconstruct the past 
mixing parameters by probing the current state of the system: 
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LEARNING TASKS
• Tomography and quantum memory

Two-qubit Werner 
states as inputs: 
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yn,τ = η (nΔt − τΔt) .

0 ≤ η(t) ≤ 1
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Pauli spin 1/2 
Xi, Zi

Learning diagrams.  
Normalized total memory capacity for  and MSE for . 
Dashed lines approximately mark regions where and 

. The optimal learning regime for our model occurs at 
around the boundary of chaotic-localized phase transitions. Calculated 
for  and , with  indicating the graph size and  
the graph degree. Total memory capacity is defined as . 

1 ≤ τ ≤ 6 τ = 1
CT ≥ 0.75

MSE ≤ 2.5 × 10−3

(N, k) = (8,3) JzΔt = 3 N k
CT = ∑

n, τ

Cn,τ

Normalized total memory capacity as a function of .  
Left: . Middle: . Right:   
There can be an optimal window for the interaction time  between 

 and  to achieve the largest memory. Low degree graphs exhibit 
slow growth of the quantum memory, possibly due to poor fading 
memory. However, by adding the delocalizing interactions , the 
memory exhibits a fast growth to optimal values for all degrees!
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Time-averaged MSE and normalized 
total memory capacity.  
For  and . 
Models with intermediate  and  
display the best performance. In the 
limit  , it becomes exceedingly 
difficult to extract the non-locally hidden 
inputs information through only (quasi-) 
local measurements.

(Δx, Jx) = (30,0) (Δx, Jx) = (30,3)
Δt k

k → N − 1

Accuracy of the logical 
m u l t i t a s k i n g a s a 
function of disorder. 
Remarkably, the presence 
of entangling interactions 
is greatly beneficial for the  
classification accuracy.

METHODOLOGY
The input-output relation of a quantum reservoir supplemented with a classical 
learning layer can be summarized as . Here  
indicates the predictions, which is found by classical post-processing and 
minimizing an error measure with respect to a sequence of desired targets . 

represents the optimal weights obtained after the training stage. Linear 
memory capacity of the reservoir can be assessed by calculating the 
correlation coefficient , which is bounded between zero 

and unity. The error measure is simply defined as .

{yn} = ℱ ({ρ𝒮,n}, ρ𝒮𝒮′ ,n, 𝒲) {yn}

{yn}
𝒲

Cn = cov2(yn, ȳn)/σ2ynσ2ȳn

MSE =
L

∑
n

(yn − ȳn)2 /L

MODEL AND DYNAMICS

ℋ = ∑
ij

Jz
ij ZiZj + ∑

ij

Jx
ij XiXj + ∑

i

hz
i Zi + ∑

i

hx
i XiHamiltonian:

An auxiliary system  is initialized in density matrix , encoding the input 
data stream at step .  interacts with the reservoir  for the time-scale  
through , before the next input is injected. The Hamiltonian  
is defined on a graph with  spins each connected to exactly  random 
neighbours.  Measurement results of the reservoir’s spins are then recorded 
for optimization. Repeating this for a sequence of temporal data, one can 
construct a quantum recurrent neural channel , capable of 
learning and performing various real-world and neurological tasks.

𝒮 ρ𝒮,n
n 𝒮 𝒮′ JzΔt

𝒰(Δt) = e−iℋΔt ℋ
N k

ρ𝒮′ ,n = ℒ𝒮 (ρ𝒮′ ,n−1)

Jz = 1, hz = 0, hx = 1, Δz = 0.2We fix:

hx/z
i = hx/z + δx/z

i

Jx/z
ij = Jx/z Aij

δx/z
i ∈ [−Δx/z, Δx/z]Disorder parameter:

 is a component of the graph adjacency matrixAij

CONCLUSION
We have shown that, in a favourable dynamical regime, our quantum 
spin model acts as a high-performing learning reservoir for temporal 
and non-linear data processing. Our work paves the way toward 
optimal design of such quantum learning platforms by relating their 
performance to their fundamental physical and geometrical 
properties.
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Dynamical logarithmic 
negativity;  
Entangling quantum 
correlations are crucial 
for avoiding localization 
and improving learning 
performance.
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