
1)The experimental probabilities 

are estimated as the relative 
frequencies, fil, of the outcomes 
of many (≈ 104) circuit 
executions. 

2)The derivatives are estimated by 
a finite difference approximation 
on fil. 

Mj

ρi Λt(·) fil

The LT algorithm is based on a regression problem for derivatives of 
experimental probability distributions over outcomes of a Positive 
Operator-Valued measurement (Ml), for different initial states (  ) .
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Conclusions
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NISQ computers are characterized by a significant noise affecting qubit operations and a number of qubits that, despite large, is still insufficient for 
error-correcting protocols. Therefore, a large toolbox of methods has been developed to verify the performance of NISQ devices. Here we 
introduce a new Liouvillian Tomography (LT) algorithm. This algorithm builds on existing protocols, generalizing them for time-dependent, non-
Markovian dynamics. A benchmark for the LT algorithm presented is obtained by applying it to synthetic data of a general system of 3 qubits 
connected to a non-Markovian reservoir. The benchmark shows that LT is capable of retrieving a generator with reasonable precision.

Consider a system with some unknown operation, Λt , LT will attempt to extract a non-unitary generator for this operation, i.e., estimate a 
Liouvillian satisfying:

Such time-local generator’s can always be cast in Lindblad-like form:

 
With Lindblad's form, evolutions can be classified as Markovian (CP-divisible) if                  or non-Markovian otherwise.  

ρi
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Lt spectra, t = 0.25
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Lt spectra, t = 0.75
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● To benchmark the algorithm a general 
system of 3 qubits coupled to a non-
Markovian reservoir was considered. 

● The Liouvillian was retrieved at 3 times 
during the evolution and compared with 
the analytical predictions for this system.

● The estimates agree well with the target 
values with more significant deviations 
for the t = 0.75, when the system is near 
the steady state. 
 

Markovian Reservoir

Q1 Q2 Q3

E1

The estimated derivatives are modeled by Born’s rule (+ definition of a 
generator), 

With this model, along with estimates of the map, states and 
measurements, the Liouvillian is estimated by minimizing the least-
squares loss between the models predictions and experimental 
derivatives.

●  Liouvillian Tomography → estimate a generator of non-unitary dynamics → used to verify and predict the performance of NISQ devices.
●  New Liouvillian Tomography algorithm capable of dealing with time-dependant non-Markovian dynamics, based on a regression problem.
●  Benchmark results: 3 qubits + Non-Markovian enviroment. 

●  Good benchmark performance demonstrating ability to predict Hamiltonian, rates and jump operators with reasonable accuracy.
●  Exhibits more error when the system is close to steady state.

●  Next step: characterzie a pulse on a real NISQ device.
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