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Abstract
We investigate long quantum spin chains under
continuous monitoring, employing matrix prod-
uct states (MPS) and the time-dependent vari-
ational principle (TDVP) algorithm. Our find-
ings reveal a notable phase transition in the er-
ror rate during monitoring, detectable even with
low bond dimensions. This approach efficiently
pinpoints critical parameters for measurement-
induced phase transitions (MIPTs) in complex
many-body quantum systems. Furthermore, we
unveil a distinct charge-sharpening (CS) transi-
tion in the context of U(1) global spin charge,
validating our TDVP approach for identifying
phase transitions across diverse system dimen-
sions and sizes.

Models
We focus on two generic interacting systems
in one dimension (whose MIPT has been also
studied by different means in [1, 2, 3]) namely a
chain of L spin-1/2 particles, unitarily evolving
with U(1) symmetric (magnetisation conserv-
ing) Hamiltonians, defined as
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with spin operators Ŝα
i and with J = 0 (XXX

chain) or J = 1/2 (J-XXX chain).

Basic Concepts
Unitary time evolution tends to entangle the sys-
tem, whereas measurements serve to disen-
tangle it. In measured-induced phase transi-
tions, measurements disrupt the system’s co-
herent evolution and can drive it across phase
boundaries.
What is charge sharpening?
This transition separates two distinct entangling
phases based on the ease or difficulty of deter-
mining the charge of the system through mea-
surements.
Time Dependent Variational Principle

|Ψ(M)⟩

The time evolved quantum state can
be brought back to the initial manifold
TMM by a projection PTMM.

i∂t|Ψ(M)⟩ = PTMMĤ|Ψ(M)⟩

The projector PTMM which projects
onto this tangent space is given by:

PTMM : H → TMM

The time-evolved quantum state can
be brought back to the initial manifold
M by a projection PTMM,

i∂t |Ψ(M)⟩ = PTMMĤ |Ψ(M)⟩ .

The projector PTMM which projects
onto this tangent space is given by

PTMM : H → TMM
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Numerical Results
Entanglement/Error phase transitions in (a),(c) XXX model, and (b),(d) in J-XXX model.

Charge-sharpening phase transitions for (a) the XXX model and (b) the J-XXX model.

Methods
The associated monitored dynamics of the quantum state are described by the following stochastic
Schrödinger equation (SSE) [4, 5, 6] for the many-body state |ψ⟩,
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with the expectation value of the local magnetisation given by the state at a given time ⟨Ŝz
i ⟩t =

⟨ψt|Ŝz
i |ψt⟩. Eq. (2) can be easily simulated by alternating its unitary and measurement terms via a

Trotter splitting,
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where the set of δW i are generated each time step from a normal distribution with variance
√
γδt

and zero mean and C is a normalizing constant. In order to extend the CS protocol to large system
sizes, we here consider the variance of the fluctuations of the local magnetization on a sub-system
of size ℓ, e.g. by defining Qℓ =
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j , we introduce its variance as
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In order to fit the MPS transition, given the much quicker convergence in χ on the left of the critical
point, we need to introduce a piece-wise ansatz, namely

x = κA(γO, νO) =

{
(γ − γO) γ < γO
(γ − γO)A1/νO γ > γO

, (5)

and we cross-checked this scaling with the one where only the right side of the transition is fitted,
giving analogous results.

Discussion
Starting with the initial Néel state |Ψ(0)⟩ = |↓↑↓↑ . . . ↓↑⟩, monitored evolution at different χ and L
values is performed. Analysis of error rate evolution reveals saturation after a timescale of order
L, indicating a transition between volume-law and area-law phases. Precisely determined critical
parameters suggest a smaller critical measurement rate γχc than that of ED simulations. Unitary
terms dominate for small L, shifting critical measurement rates leftward for larger L. Although critical
exponents differ slightly between ED and MPS, well-converged results are obtained for small bond
dimensions. Transition to the CS phase is observed through magnetization variance values, showing
a shift from extensive to sub-linear scaling with increasing γ. Cross-checking with ED simulations
confirms the observed transition, highlighting the method’s importance in studying large systems
with continuous time.


